Diverse environmental cues drive the size of reproductive aggregation in a rheophilic fish
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ02000012
Technology Agency of the Czech Republic
PubMed
36949527
PubMed Central
PMC10035167
DOI
10.1186/s40462-023-00379-0
PII: 10.1186/s40462-023-00379-0
Knihovny.cz E-zdroje
- Klíčová slova
- Fish movement, Long-term monitoring, Migration, Phenology, Reproductive behaviour, Weather,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Animal migrations are periodic and relatively predictable events, and their precise timing is essential to the reproductive success. Despite large scientific effort in monitoring animal reproductive phenology, identification of complex environmental cues that determine the timing of reproductive migrations and temporal changes in the size of reproductive aggregations in relation to environmental variables is relatively rare in the current scientific literature. METHODS: We tagged and tracked 1702 individuals of asp (Leuciscus aspius), a large minnow species, and monitored with a resolution of one hour the size of their reproductive aggregations (counts of sexes present at the breeding grounds standardized by the sum of individuals in the season) over seven breeding seasons using passive integrated transponder tag systems. We examined the size of reproductive aggregations in relation to environmental cues of day number within a reproductive season (intra-year seasonality), water temperature, discharge, hour in a day (intra-day pattern), temperature difference between water and air, precipitation, atmospheric pressure, wind speed and lunar phase. A generalized additive model integrating evidence from seven breeding seasons and providing typical dynamics of reproductive aggregations was constructed. RESULTS: We demonstrated that all environmental cues considered contributed to the changes in the size of reproductive aggregations during breeding season, and that some effects varied during breeding season. Our model explained approximately 50% of the variability in the data and the effects were sex-dependent (models of the same structure were fitted to each sex separately, so that we effectively stratified on sex). The size of reproductive aggregations increased unimodally in response to day in season, correlated positively with water temperature and wind speed, was highest before and after the full moon, and highest at night (interacting with day in a season). Males responded negatively and females positively to increase in atmospheric pressure. CONCLUSION: The data demonstrate complex utilization of available environmental cues to time reproductive aggregations in freshwater fish and their interactions during the reproductive season. The study highlights the need to acquire diverse data sets consisting of many environmental cues to achieve high accuracy of interpretation of reproductive timing.
Zobrazit více v PubMed
Alerstam T, Hedenström A, Åkesson S. Long-distance migration: evolution and determinants. Oikos. 2003;103:247–60. doi: 10.1034/j.1600-0706.2003.12559.x. DOI
Chapman BB, Hulthén K, Brodersen J, Nilsson PA, Skov C, Hansson LA, et al. Partial migration in fishes: causes and consequences. J Fish Biol. 2012;81:456–78. doi: 10.1111/j.1095-8649.2012.03342.x. PubMed DOI
Candino M, Donadio E, Pauli JN. Phenological drivers of ungulate migration in South America: characterizing the movement and seasonal habitat use of guanacos. Mov Ecol. 2022;10:1–14. doi: 10.1186/s40462-022-00332-7. PubMed DOI PMC
Mehner T. Diel vertical migration of freshwater fishes - proximate triggers, ultimate causes and research perspectives. Freshw. Biol. 2012;57:1342–59.
Sajdlová Z, Frouzová J, Draštík V, Jůza T, Peterka J, Prchalová M, et al. Are diel vertical migrations of european perch (Perca fluviatilis L.) early juveniles under direct control of light intensity? Evidence from a large field experiment. Freshw Biol. 2018;63:473–82. doi: 10.1111/fwb.13085. DOI
Childress ES, Mcintyre PB. Multiple nutrient subsidy pathways from a spawning migration of iteroparous fish. Freshw Biol. 2015;60:490–9. doi: 10.1111/fwb.12494. DOI
Reglero P, Ortega A, Balbín R, Abascal FJ, Medina A, Blanco E et al. Atlantic bluefin tuna spawn at suboptimal temperatures for their offspring. Proceedings Biol Sci. 2018;285:20171405. PubMed PMC
Cushing DH. Plankton Production and Year-class Strength in Fish populations: an update of the Match/Mismatch hypothesis. Adv Mar Biol. 1990;26:249–93. doi: 10.1016/S0065-2881(08)60202-3. DOI
Lerche-Jørgensen M, Korner-Nievergelt F, Tøttrup AP, Willemoes M, Thorup K. Early returning long-distance migrant males do pay a survival cost. Ecol Evol. 2018;8:11434–49. doi: 10.1002/ece3.4569. PubMed DOI PMC
Møller AP. Phenotype-dependent arrival time and its consequences in a migratory bird. Behav Ecol Sociobiol. 1994;35:115–22. doi: 10.1007/BF00171501. DOI
Hulthén K, Chapman BB, Nilsson PA, Hansson L, Skov C, Brodersen J et al. Timing and synchrony of migration in a freshwater fish: consequences for survival. J. Anim. Ecol. 2022;91(10):2103–12. PubMed PMC
Acácio M, Catry I, Soriano-Redondo A, Silva JP, Atkinson PW, Franco AMA. Timing is critical: consequences of asynchronous migration for the performance and destination of a long-distance migrant. Mov Ecol. 2022;10:1–16. doi: 10.1186/s40462-022-00328-3. PubMed DOI PMC
Burnside RJ, Salliss D, Collar NJ, Dolman PM. Birds use individually consistent temperature cues to time their migration departure. Proc Natl Acad Sci U S A. 2021;118:2022. doi: 10.1073/pnas.2026378118. PubMed DOI PMC
Winkler DW, Jørgensen C, Both C, Houston AI, McNamara JM, Levey DJ, et al. Cues, strategies, and outcomes: how migrating vertebrates track environmental change. Mov Ecol. 2014;2:1–15. doi: 10.1186/2051-3933-2-10. PubMed DOI
Lucas MC, Baras E. Migration of Freshwater Fishes. Lucas MC, Baras E, Thom TJ, Duncan A, Slavk O, editors. Oxford, UK; 2001.
Berdahl A, Westley PAH, Quinn TP. Social interactions shape the timing of spawning migrations in an anadromous fish. Anim Behav. 2017;126:221–9. doi: 10.1016/j.anbehav.2017.01.020. DOI
Tibblin P, Forsman A, Borger T, Larsson P. Causes and consequences of repeatability, flexibility and individual fine-tuning of migratory timing in pike. J Anim Ecol. 2016;85:136–45. doi: 10.1111/1365-2656.12439. PubMed DOI
Sims DW, Wearmouth VJ, Genner MJ, Southward AJ, Hawkins SJ. Low-temperature-driven early spawning migration of a temperate marine fish. J Anim Ecol. 2004;73:333–41. doi: 10.1111/j.0021-8790.2004.00810.x. DOI
Perkin JS, Gido KB, Cooper AR, Turner TF, Osborne MJ, Johnson ER, et al. Fragmentation and dewatering transform Great Plains stream fish communities. Ecol Monogr. 2015;85:73–92. doi: 10.1890/14-0121.1. DOI
Šmejkal M, Souza AT, Blabolil P, Bartoň D, Sajdlová Z, Vejřík L, et al. Nocturnal spawning as a way to avoid egg exposure to diurnal predators. Sci Rep. 2018;8:15377. doi: 10.1038/s41598-018-33615-4. PubMed DOI PMC
Forsythe PS, Scribner KT, Crossman JA, Ragavendran A, Baker EA, Davis C, et al. Environmental and lunar cues are predictive of the timing of river entry and spawning-site arrival in lake sturgeon Acipenser fulvescens. J Fish Biol. 2012;81:35–53. doi: 10.1111/j.1095-8649.2012.03308.x. PubMed DOI
Katselis G, Koukou K, Dimitriou E, Koutsikopoulos C. Short-term seaward fish migration in the Messolonghi–Etoliko lagoons (western greek coast) in relation to climatic variables and the lunar cycle. Estuar Coast Shelf Sci. 2007;73:571–82. doi: 10.1016/j.ecss.2007.02.010. DOI
de Magalhães Lopes J, Alves CBM, Peressin A, Pompeu PS. Influence of rainfall, hydrological fluctuations, and lunar phase on spawning migration timing of the neotropical fish Prochilodus costatus. Hydrobiologia. 2018;818:145–61. doi: 10.1007/s10750-018-3601-4. DOI
Migaud H, Davie A, Taylor JF. Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. J. Fish Biol. 2010;76(1):27–68. PubMed
Souza AT, Ilarri MI, Timóteo S, Marques JC, Martins I. Assessing the effects of temperature and salinity oscillations on a key mesopredator fish from european coastal systems. Sci Total Environ. 2018;640–641:1332–45. doi: 10.1016/j.scitotenv.2018.05.348. PubMed DOI
Pankhurst NW, Porter MJR. Cold and dark or warm and light: variations on the theme of environmental control of reproduction. Fish Physiol Biochem. 2003;28:385–9. doi: 10.1023/B:FISH.0000030602.51939.50. DOI
Robertson DR. The ecology of fishes on coral reefs. In: Sale P, editor. Ecol Fishes Coral Reefs. 1st editio. Academic Press LTD; 1993. p. 356–86.
Finlay RW, Poole R, French AS, Phillips KP, Kaufmann J, Doogan A, et al. Spawning-related movements in a salmonid appear timed to reduce exposure to visually oriented predators. Anim Behav. 2020;170:65–79. doi: 10.1016/j.anbehav.2020.10.004. DOI
Šmejkal M, Bartoň D, Brabec M, Sajdlová Z, Souza AT, Moraes KR, et al. Climbing up the ladder: male reproductive behaviour changes with age in a long-lived fish. Behav Ecol Sociobiol. 2021;75:1–13. doi: 10.1007/s00265-020-02961-7. DOI
Morbey YE. Pair formation, pre-spawning waiting, and protandry in kokanee, Oncorhynchus nerka. Behav Ecol Sociobiol. 2003;54:127–35. doi: 10.1007/s00265-003-0606-3. DOI
Šmejkal M, Ricard D, Vejřík L, Mrkvička T, Vebrová L, Baran R, et al. Seasonal and daily protandry in a cyprinid fish. Sci Rep. 2017;7:1–9. doi: 10.1038/s41598-017-04827-x. PubMed DOI PMC
Trail PW, Adams ES. Active mate choice at cock-of-the-rock leks: tactics of sampling and comparison. Behav Ecol Sociobiol. 1989;25:283–92. doi: 10.1007/BF00300055. DOI
Apollonio M, De Cena F, Bongi P, Ciuti S. Female preference and predation risk models can explain the maintenance of a fallow deer (Dama dama) lek and its “handy” location. PLoS One. 2014;9(3):e89852. PubMed PMC
Rotics S, Kaatz M, Turjeman S, Zurell D, Wikelski M, Sapir N, et al. Early arrival at breeding grounds: causes, costs and a trade-off with overwintering latitude. J Anim Ecol. 2018;87:1627–38. doi: 10.1111/1365-2656.12898. PubMed DOI
Pärt T. Experimental evidence of environmental effects on age-specific reproductive success: the importance of resource quality. Proc R Soc B Biol Sci. 2001;268:2267–71. doi: 10.1098/rspb.2001.1803. PubMed DOI PMC
Morbey YE, Ydenberg RC. Protandrous arrival timing to breeding areas: a review. Ecol Lett. 2001;4:663–73. doi: 10.1046/j.1461-0248.2001.00265.x. DOI
Kokko H, Gunnarsson TG, Morrell LJ, Gill J. a. Why do female migratory birds arrive later than males? J Anim Ecol. 2006;75:1293–303. PubMed
Šmejkal M, Bartoň D, Brabec M, Sajdlová Z, Souza AT, Moraes KR, et al. Behaviour affects capture probability by active sampling gear in a cyprinid fish. Fish Res. 2022;249:106267. doi: 10.1016/j.fishres.2022.106267. DOI
Briedis M, Bauer S, Adamík P, Alves JA, Costa JS, Emmenegger T et al. A full annual perspective on sex-biased migration timing in long-distance migratory birds. Proc. R. Soc. B. 2019;286:20182821. PubMed PMC
Bartoň D, Brabec M, Sajdlová Z, Souza AT, Duras J, Kortan D, et al. Hydropeaking causes spatial shifts in a reproducing rheophilic fish. Sci Total Environ Elsevier. 2022;806:150649. doi: 10.1016/j.scitotenv.2021.150649. PubMed DOI
Schiemer F, Waidbacher H. Strategies for conservation of a danubian fish fauna. In: Boon PJ, Calow P, Petts GJ, editors. River Conserv Manag. 1st ed. John Wiley & Sons; 1992. pp. 363–82.
Balon EK. Reproductive guilds of fishes: a proposal and definition. J Fish Res Board Canada. 1975;32:821–64. doi: 10.1139/f75-110. DOI
Bartoň D, Blabolil P, Sajdlová Z, Vejřík L, Souza AT, Kubečka J, et al. Effects of hydropeaking on the attached eggs of a rheophilic cyprinid species. Ecohydrology. 2021;14:e2280. doi: 10.1002/eco.2280. DOI
Miranda LE. Refining Boat Electrofishing Equipment to improve consistency and reduce harm to Fish. North Am J Fish Manag. 2005;25:609–18. doi: 10.1577/M04-094.1. DOI
Šmejkal M, Blabolil P, Bartoň D, Duras J, Vejřík L, Sajdlová Z, et al. Sex-specific probability of PIT-tag retention in a cyprinid fish. Fish Res. 2019;219:105325. doi: 10.1016/j.fishres.2019.105325. DOI
Castro-Santos T, Haro A, Walk S. A passive integrated transponder (PIT) tag system for monitoring fishways. Fish Res. 1996;28:253–61.
Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J Clim. 2011;24:3624–48. doi: 10.1175/JCLI-D-11-00015.1. PubMed DOI PMC
NASA. NASA POWER | Prediction Of Worldwide Energy Resources. 2020.
NASA. Global Modeling and Assimilation Office (GMAO). Greenbelt, MD, USA, Goddard Earth Sciences Data. and Information Services Center (GES DISC); 2022.
Garner P, Clough S, Griffiths SW, Deans D, Ibbotson A. Use of shallow marginal habitat by Phoxinus phoxinus: a trade-off between temperature and food? J Fish Biol. 1998;52:600–9.
Lazaridis E. lunar: Lunar Phase & Distance, Seasons and Other Environmental Factors. 2014.
Chrysafi A, Jepsen N, del Villar-Guerra D, Larsen MH, Skov C. Effects of passive integrated transponder tags on short-term feeding patterns in european perch (Perca fluviatilis) J Fish Biol. 2021;99:2035–9. doi: 10.1111/jfb.14887. PubMed DOI
Burnett NJ, Stamplecoskie KM, Thiem JD, Cooke SJ. Comparison of detection efficiency among three sizes of half-duplex passive integrated transponders using manual tracking and fixed antenna arrays. North Am J Fish Manag. 2013;33:7–13. doi: 10.1080/02755947.2012.734895. DOI
Connolly PJ, Jezorek IG, Martens KD, Prentice EF. Measuring the performance of two stationary interrogation systems for detecting downstream and upstream movement of PIT-tagged salmonids. North Am J Fish Manag Wiley. 2008;28:402–17. doi: 10.1577/M07-008.1. DOI
Hastie TJ. Generalized additive models. New York Routledge; 2017.
Wood SN. Generalized additive models: An introduction with R, second edition. Gen. Addit. Model. An Introd. with R, Second Ed. Chapman & Hall; 2017.
Boor C. A practical guide to Splines - revised Edition. New York. Springer: Springer-Verlag; 2001.
Hastie T, Tibshirani R, Varying-Coefficient, Models J R Stat Soc Ser B. 1993;55:757–96.
R Core Team RD. R Development Core Team, R: a language and environment for statistical computing. R A Lang.Environ. Estat. Comput. 2022.
Hladík M, Kubečka J. Fish migration between a temperate reservoir and its main tributary. Hydrobiologia. 2003;504:251–66. doi: 10.1023/B:HYDR.0000008525.46939.42. DOI
King J, Cambray JA, Impson ND. Linked effects of dam-released floods and water temperature on spawning of the Clanwilliam yellowfish Barbus capensis. Hydrobiologia. 1998;384:245–65. doi: 10.1023/A:1003481524320. DOI
Brönmark C, Skov C, Brodersen J, Nilsson PA, Hansson L-A. Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS ONE. 2008;3:e1957. doi: 10.1371/journal.pone.0001957. PubMed DOI PMC
Jansen T, Gislason H. Temperature affects the timing of spawning and migration of North Sea mackerel. Cont Shelf Res. 2011;31:64–72. doi: 10.1016/j.csr.2010.11.003. DOI
Srygley RB, Dudley R, Oliveira EG, Aizprúa R, Pelaez NZ, Riveros AJ. El Niño and dry season rainfall influence hostplant phenology and an annual butterfly migration from neotropical wet to dry forests. Glob Chang Biol. 2010;16:936–45. doi: 10.1111/j.1365-2486.2009.01986.x. DOI
Haest B, Hüppop O, Bairlein F. The influence of weather on avian spring migration phenology: what, where and when? Glob Chang Biol. 2018;24:5769–88. doi: 10.1111/gcb.14450. PubMed DOI
Kauffman MJ, Aikens EO, Esmaeili S, Kaczensky P, Middleton A, Monteith KL, et al. Causes, Consequences, and conservation of Ungulate Migration. Annu Rev Ecol Evol Syst Annual Reviews. 2021;52:453–78. doi: 10.1146/annurev-ecolsys-012021-011516. DOI
Erni B, Liechti F, Underhill LG, Bruderer B. Wind and rain govern the intensity of nocturnal bird migration in central Europe - A log-linear regression analysis. Ardea -Wageningen. 2002;90:155–66.
Liechti F. Birds: Blowin’ by the wind? J Ornithol. 2006;147:202–11. doi: 10.1007/s10336-006-0061-9. DOI
Knight SM, Pitman GM, Flockhart DTT, Norris DR. Radio-tracking reveals how wind and temperature influence the pace of daytime insect migration.Biol Lett. 2019;15. PubMed PMC
Rodríguez-Basalo A, Punz A, Ceballos-Roa E, Jordà G, Manuel González-Irusta J, Massutí E. Fisheries-based approach to disentangle mackerel (Scomber scombrus) migration in the Cantabrian Sea. Fish Oceanogr. 2022;31:443–55. doi: 10.1111/fog.12594. DOI
Jarić I, Říha M, Souza AT, Rabaneda-Bueno R, Děd V, Gjelland K, et al. Influence of internal seiche dynamics on vertical movement of fish. Freshw Biol. 2022;67:1543–58. doi: 10.1111/fwb.13959. DOI
Sudo R, Okamura A, Fukuda N, Miller MJ, Tsukamoto K. Environmental factors affecting the onset of spawning migrations of japanese eels (Anguilla japonica) in Mikawa Bay Japan. Environ Biol Fishes. 2017;100:237–49. doi: 10.1007/s10641-017-0575-4. DOI
Casas-Mulet R, Saltveit SJ, Alfredsen K. The survival of Atlantic Salmon ( Salmo salar ) Eggs during dewatering in a river subjected to Hydropeaking. River Res Appl. 2015;31:433–46. doi: 10.1002/rra.2827. DOI
Taylor MK, Cooke SJ. Meta-analyses of the effects of river flow on fish movement and activity. Environ Rev. 2012;20:211–9. doi: 10.1139/a2012-009. DOI
Straile D. Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions: a test of the PEG model. Freshw Biol. 2015;60:174–83. doi: 10.1111/fwb.12484. DOI
Targoñska K, Zarski D, Kucharczyk D. A review of the artificial reproduction of asp, Aspius aspius (L.), and nase, Chondrostoma nasus (L) Arch Pol Fish. 2008;16:341–54. doi: 10.2478/s10086-008-0022-4. DOI
Woods T, Kaz A, Giam X. Phenology in freshwaters: a review and recommendations for future research. Ecography (Cop). 2022;2022:e05564.
Sorensen PW, Wisenden BD. Fish pheromones and related cues. Fish pheromones relat. cues. Wiley Blackwell; 2015.
Childs AR, Cowley PD, Næsje TF, Booth AJ, Potts WM, Thorstad EB, et al. Do environmental factors influence the movement of estuarine fish? A case study using acoustic telemetry. Estuar Coast Shelf Sci Academic Press. 2008;78:227–36. doi: 10.1016/j.ecss.2007.12.003. DOI
Rebke M, Coulson T, Becker PH, Vaupel JW. Reproductive improvement and senescence in a long-lived bird. Proc Natl Acad Sci U S A. 2010;107:7841–6. doi: 10.1073/pnas.1002645107. PubMed DOI PMC
Nathan R, Monk CT, Arlinghaus R, Adam T, Alós J, Assaf M et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science (80-). American Association for the Advancement of Science; 2022;375. PubMed
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Found. Proj. 2016.