Seasonal and daily protandry in a cyprinid fish
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28680056
PubMed Central
PMC5498546
DOI
10.1038/s41598-017-04827-x
PII: 10.1038/s41598-017-04827-x
Knihovny.cz E-zdroje
- MeSH
- Cyprinidae fyziologie MeSH
- procesy určující pohlaví MeSH
- roční období MeSH
- rozmnožování MeSH
- sexuální chování zvířat fyziologie MeSH
- telemetrie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In polygynandrous mating systems, in which females limit reproductive success, males can increase their success by investing in courtship. Earlier arrival at the spawning ground compared to when females arrive may increase their opportunities in competitive mating systems. In this study, we used passive telemetry to test whether a male minnow known as the asp, Leuciscus aspius, times its arrival at spawning grounds relative to the arrival of females. Males arrived in a model stream approximately five days earlier than females on average and left four to five days later than females over two years. Both sexes performed a daily migration between a staging ground (standing water, low energy costs) and the fluvial spawning ground (high energy costs). Fish abundance peaked twice a day, with a major peak at sunset and a minor peak at sunrise and with the evening peak abundance for males occurring 1 hour 40 minutes earlier than that of females. The number of females on the spawning ground never exceeded the number of males. While the degree of protandry is hypothesized to be influenced by the operational sex ratio (ranging from 0.5 to 1 in our study), our data did not support this theory.
Faculty of Economics University of South Bohemia České Budějovice Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Kvarnemo C, Ahnesjö I. The dynamics of operational sex ratios and competition for mates. Trends Ecol. Evol. 1996;11:404–408. doi: 10.1016/0169-5347(96)10056-2. PubMed DOI
Weir LK, Grant JWA, Hutchings JA. The influence of operational sex ratio on the intensity of competition for mates. Am. Nat. 2011;177:167–176. doi: 10.1086/657918. PubMed DOI
Clutton-Brock TH, Vincent AC. Sexual selection and the potential reproductive rates of males and females. Nature. 1991;351:58–60. doi: 10.1038/351058a0. PubMed DOI
Forsgren E, Amundsen T, Borg AA, Bjelvenmark J. Unusually dynamic sex roles in a fish. Nature. 2004;429:551–4. doi: 10.1038/nature02562. PubMed DOI
Parker GA. Courtship persistence and female-guarding as male time investment strategies. Behaviour. 1974;48:157–183. doi: 10.1163/156853974X00327. DOI
Trivers, R. Social evolution. (Cummings Publishing, 1985).
Gwynne DT. Sexual difference theory: mormon crickets show role reversal in mate choice. Science. 1981;213:779–780. doi: 10.1126/science.213.4509.779. PubMed DOI
Balmford A, Rosser AM, Albon SD. Correlates of female choice in resource-defending antelope. Behav. Ecol. Sociobiol. 1992;31:107–114. doi: 10.1007/BF00166343. DOI
Székely T, Weissing FJ, Komdeur J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 2014;27:1500–1512. doi: 10.1111/jeb.12415. PubMed DOI
Jonsson N, Jonsson B, Hansen LP. Energetic cost of spawning in male and female Atlantic salmon (Salmo salar L.) J. Fish Biol. 1991;39:739–744. doi: 10.1111/j.1095-8649.1991.tb04403.x. DOI
Huse G. Sex-specific life history strategies in capelin (Mallotus villosus)? Can. J. Fish. Aquat. Sci. 1998;55:631–638. doi: 10.1139/f97-275. DOI
Robertson, D. R. In The Ecology of Fishes on Coral Reefs (ed. Sale, P.) 356–386 (Academic Press LTD, 1993).
Garant D, Dodson JJ, Bernatchez L. A genetic evaluation of mating system and determinants of individual reproductive success in Atlantic salmon (Salmo salar L.) J. Hered. 2001;92:137–45. doi: 10.1093/jhered/92.2.137. PubMed DOI
Höglund, J. & Alatalo, R. V. Leks. (Princetown University Press, 1995).
Ahnesjö, I., Forsgren, E. & Kvarnemo, C. In Fish behaviour 303–336 (2008).
Morbey YE, Ydenberg RC. Protandrous arrival timing to breeding areas: a review. Ecol. Lett. 2001;4:663–673. doi: 10.1046/j.1461-0248.2001.00265.x. DOI
Morbey YE, Coppack T, Pulido F. Adaptive hypotheses for protandry in arrival to breeding areas: a review of models and empirical tests. J. Ornithol. 2012;153:207–215. doi: 10.1007/s10336-012-0854-y. DOI
Wiklund C, Lindfors V, Forsberg J. Early male emergence and reproductive phenology of the adult overwintering butterfly Gonepteryx rhamni in Sweden. Oikos. 1996;75:227–240. doi: 10.2307/3546246. DOI
Windle MJS, Rose GA. Do cod form spawning leks? Evidence from a Newfoundland spawning ground. Mar. Biol. 2007;150:671–680. doi: 10.1007/s00227-006-0385-2. DOI
Apollonio, M., De Cena, F., Bongi, P. & Ciuti, S. Female preference and predation risk models can explain the maintenance of a fallow deer (Dama dama) lek and its ‘handy’ location. PLoS One9 (2014). PubMed PMC
Morbey YE. Pair formation, pre-spawning waiting, and protandry in kokanee. Oncorhynchus nerka. Behav. Ecol. Sociobiol. 2003;54:127–135.
Kokko H, Gunnarsson TG, Morrell LJ, Gill Ja. Why do female migratory birds arrive later than males? J. Anim. Ecol. 2006;75:1293–1303. doi: 10.1111/j.1365-2656.2006.01151.x. PubMed DOI
Møller AP. Phenotype-dependent arrival time and its consequences in a migratory bird. Behav. Ecol. Sociobiol. 1994;35:115–122. doi: 10.1007/BF00171501. DOI
Olsson M, Madsen T. Costs of mating with infertile males selects for late emergence in female sand lizards (Lacerta agilis L.) Copeia. 1996;2:462–464. doi: 10.2307/1446866. DOI
Schulz RW, Miura T. Spermatogenesis and its endocrine regulation. Fish Physiol. Biochem. 2002;26:43–56. doi: 10.1023/A:1023303427191. DOI
Dahl J, et al. The timing of spawning migration: implications of environmental variation, life history, and sex. Can. J. Zool. 2004;82:1864–1870. doi: 10.1139/z04-184. DOI
Morbey Y. Protandry in Pacific salmon. Can. J. Fish. Aquat. Sci. 2000;57:1252–1257. doi: 10.1139/f00-064. DOI
Jonsson N, Jonsson B, Hansen LP. Partial segregation in the timing of migration of Atlantic salmon of different ages. Anim. Behav. 1990;40:313–321. doi: 10.1016/S0003-3472(05)80926-1. DOI
Iwasa Y, Obara Y. A game model for the daily activity schedule of the male butterfly. J. Insect Behav. 1989;2:589–608. doi: 10.1007/BF01065781. DOI
Křížek, J. & Vostradovský, J. Population dynamics of the rapacious carp (Aspius aspius L.) in the Želivka Reservoir in 1972–1992. 4th Int. Conf. Reserv. Limnol. water Qual. České Budějovice, Czech Republic, B. Abstr. 180–182 (2002).
Hladík M, Kubečka J. Fish migration between a temperate reservoir and its main tributary. Hydrobiologia. 2003;504:251–266. doi: 10.1023/B:HYDR.0000008525.46939.42. DOI
Šmejkal, M. et al. Population size, age structure and spawning dynamics of asp (Leuciscus aspius) in Želivka Reservoir (in Czech). (2016).
Berglund A, Rosenqvist G, Svensson I. Reproductive success of females limited by males in two pipefish species. The American Naturalist. 1989;133:506. doi: 10.1086/284932. DOI
Croft DP, et al. Sex-biased movement in the guppy (Poecilia reticulata) Oecologia. 2003;137:62–68. doi: 10.1007/s00442-003-1268-6. PubMed DOI
Rios-Cardenas O, Webster MS. Paternity and paternal effort in the pumpkinseed sunfish. Behav. Ecol. 2005;16:914–921. doi: 10.1093/beheco/ari076. DOI
Sorensen, P. W. & Wisenden, B. D. Fish Pheromones and Related Cues. Fish Pheromones and Related Cues (Wiley Blackwell, 2015).
Canal D, Jovani R, Potti J. Multiple mating opportunities boost protandry in a pied flycatcher population. Behav. Ecol. Sociobiol. 2012;66:67–76. doi: 10.1007/s00265-011-1253-8. DOI
Møller AP, Balbontín J, Cuervo JJ, Hermosell IG, De Lope F. Individual differences in protandry, sexual selection, and fitness. Behav. Ecol. 2009;20:433–440. doi: 10.1093/beheco/arn142. DOI
Mei J, Gui JF. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Science China Life Sciences. 2015;58:124–136. doi: 10.1007/s11427-014-4797-9. PubMed DOI
Tibblin P, Forsman A, Borger T, Larsson P. Causes and consequences of repeatability, flexibility and individual fine-tuning of migratory timing in pike. J. Anim. Ecol. 2016;85:136–145. doi: 10.1111/1365-2656.12439. PubMed DOI
Morbey YE. Protandry models and their application to salmon. Behav. Ecol. 2002;13:337–343. doi: 10.1093/beheco/13.3.337. DOI
Møller AP. Protandry, sexual selection and climate change. Glob. Chang. Biol. 2004;10:2028–2035. doi: 10.1111/j.1365-2486.2004.00874.x. DOI
Rajasilta M. Relationship between food, fat, sexual maturation, and spawning time of Baltic herring (Clupea harengus membras) in the Archipelago Sea. Can. J. Fish. Aquat. Sci. 1992;49:644–654. doi: 10.1139/f92-073. DOI
Smith RJ, Moore FR. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 2005;57:231–239. doi: 10.1007/s00265-004-0855-9. DOI
Alcock J. Small males emerge earlier than large males in Dawson’s burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini) J. Zool. 1997;242:453–462. doi: 10.1111/j.1469-7998.1997.tb03848.x. DOI
Munakata A, Kobayashi M. Endocrine control of sexual behavior in teleost fish. Gen. Comp. Endocrinol. 2010;165:456–468. doi: 10.1016/j.ygcen.2009.04.011. PubMed DOI
Rideout RM, Rose GA, Burton MPM. Skipped spawning in female iteroparous fishes. Fish Fish. 2005;6:50–72. doi: 10.1111/j.1467-2679.2005.00174.x. DOI
Skov C, et al. Evaluation of PIT-tagging in cyprinids. J. Fish Biol. 2005;67:1195–1201. doi: 10.1111/j.1095-8649.2005.00814.x. DOI
Hulthén K, et al. Sex identification and PIT-tagging: Tools and prospects for studying intersexual differences in freshwater fishes. J. Fish Biol. 2014;84:503–512. doi: 10.1111/jfb.12300. PubMed DOI
Burnett NJ, Stamplecoskie KM, Thiem JD, Cooke SJ. Comparison of detection efficiency among three sizes of half-duplex passive integrated transponders using manual tracking and fixed antenna arrays. North Am. J. Fish. Manag. 2013;33:7–13. doi: 10.1080/02755947.2012.734895. DOI
Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. & Hahn, U. Global envelope tests for spatial processes. J. R. Stat. Soc. Ser. B 1–25 (2016).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2015).
Esri. Working with ArcMap. ArcGIS Help 10.2.2. doi:http://resources.arcgis.com/en/help/main/10.2/#/Mapping_ and_visualization_in_ArcGIS_for_Desktop/018q00000004000000/ (2016).
Diverse environmental cues drive the size of reproductive aggregation in a rheophilic fish
Effects of physical parameters on fish migration between a reservoir and its tributaries
Negative feedback concept in tagging: Ghost tags imperil the long-term monitoring of fishes
Nocturnal spawning as a way to avoid egg exposure to diurnal predators
Early life-history predator-prey reversal in two cyprinid fishes