Effects of physical parameters on fish migration between a reservoir and its tributaries
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35606377
PubMed Central
PMC9126976
DOI
10.1038/s41598-022-12231-3
PII: 10.1038/s41598-022-12231-3
Knihovny.cz E-zdroje
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- Cyprinidae * MeSH
- monitorování životního prostředí metody MeSH
- roční období MeSH
- ryby MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
Reservoirs interrupt natural riverine continuity, reduce the overall diversity of the environment, and enhance the spread of non-native fish species through suitable environments. Under favourable conditions, invasive species migrate to tributaries to benefit from local resource supplies. However, the changes in physical conditions in reservoirs that motivate fish species to migrate remain poorly understood. We analysed migration between a reservoir and its tributary in three non-native (asp Leuciscus aspius, ide Leuciscus idus, and bream Abramis brama) and two native (chub Squalius cephalus and pike Esox lucius) species equipped with radio tags. This 5-year study revealed that an increasing day length was the most general predictor of migration into the tributary in all observed species except E. lucius. Only L. aspius responded to the substantially increasing water level in the reservoir, while the migration of L. idus and S. cephalus was attenuated. Abramis brama and S. cephalus occurred more frequently in tributaries with an increase in temperature in the reservoir and vice versa, but if the difference in temperature between the reservoir and its tributary was small, then A. brama did not migrate. Our results showed that migration from the reservoir mainly followed the alterations of daylight, while responses to other parameters were species specific. The interindividual heterogeneity within the species was significant and was not caused by differences in length or sex. Our results contribute to the knowledge of how reservoirs can affect the spread of non-native species that adapt to rapid human-induced environmental changes.
Zobrazit více v PubMed
Dugatkin LA. Principles of Animal Behavior. 4. University of Chicago Press; 2018.
Lucas MC, Baras E. Migration of Freshwater Fishes. Blackwell Science; 2001.
Northcote TG. Potamodromy in Sahnonidae—Living and moving in the fast lane. North Am. J. Fish. Manage. 1997;17:1029–1045. doi: 10.1577/1548-8675(1997)017<1029:PISAMI>2.3.CO;2. DOI
Brönmark C, et al. There and back again: Migration in freshwater fishes. Can. J. Zool. 2013;92:467–479. doi: 10.1139/cjz-2012-0277. DOI
L’Abée-Lund JH, Vøllestad LA. Feeding migration of roach, Rutilus rutilus (L.), in Lake Arungen, Norway. J. Fish Biol. 1987;30:349–355. doi: 10.1111/j.1095-8649.1987.tb05759.x. DOI
Mouchlianitis FA, et al. Does fragmented river connectivity alter the reproductive behavior of the potamodromous fish Alburnus vistonicus? Hydrobiologia. 2021;848:4029. doi: 10.1007/s10750-021-04621-x. DOI
Brönmark C, Skov C, Brodersen J, Nilsson PA, Hansson L-A. Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS ONE. 2008;3:2–7. doi: 10.1371/journal.pone.0001957. PubMed DOI PMC
Brodersen J, Hansen JH, Skov C. Partial nomadism in large-bodied bream (Abramis brama) Ecol. Freshw. Fish. 2019;28:650–660. doi: 10.1111/eff.12483. DOI
Magnuson JJ, Crowder LB, Medvick PA. Temperature as an ecological resource. Integr. Compar. Biol. 1979;19:331.
Beamish FWH. Swimming capacity. Fish Physiol. 1978;7:101. doi: 10.1016/S1546-5098(08)60164-8. DOI
Benitez JP, Ovidio M. The influence of environmental factors on the upstream movements of rheophilic cyprinids according to their position in a river basin. Ecol. Freshw. Fish. 2018;27:660–671. doi: 10.1111/eff.12382. DOI
Lucas MC, Batley E. Seasonal movements and behaviour of adult Barbel Barbus barbus, a riverine cyprinid fish: Implications for river management. J. Appl. Ecol. 1996;33:1345–1358. doi: 10.2307/2404775. DOI
Benjamin JR, Vidergar DT, Dunham JB. Thermal heterogeneity, migration, and consequences for spawning potential of female bull trout in a river–reservoir system. Ecol. Evol. 2020;10:4128. doi: 10.1002/ece3.6184. PubMed DOI PMC
Fernando CH, Holčík J. Fish in reservoirs. Int. Revue der gesamten Hydrobiol. Hydrogr. 1991;76:149–167. doi: 10.1002/iroh.19910760202. DOI
Kubecka J. Succession of fish communities in reservoirs of Central and Eastern Europe. Compar. Reserv. Limnol. Water Qual. Manage. 1993 doi: 10.1007/978-94-017-1096-1_11. DOI
Pfauserová N, Slavík O, Horký P, Turek J, Randák T. Spatial distribution of native fish species in tributaries is altered by the dispersal of non-native species from reservoirs. Sci. Total Environ. 2021;755:143108. doi: 10.1016/j.scitotenv.2020.143108. PubMed DOI
Hladík M, Kubečka J. Fish migration between a temperate reservoir and its main tributary. Hydrobiologia. 2003;504:251–266. doi: 10.1023/B:HYDR.0000008525.46939.42. DOI
Reyes-Gavilan FG, Garrido R, Nicieza AG, Toledo MM, Brana F. Fish community variation along physical gradients in short streams of northern Spain and the disruptive effect of dams. Hydrobiologia. 1996;321:155–163. doi: 10.1007/BF00023171. DOI
Falke JA, Gido KB. Spatial effects of reservoirs on fish assemblages in great plains streams in Kansas, USA. River Res. Appl. 2006;22:55–68. doi: 10.1002/rra.889. DOI
Vitule JRS, Skóra F, Abilhoa V. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers. Distrib. 2012;18:111–120. doi: 10.1111/j.1472-4642.2011.00821.x. DOI
Van der Zanden MJ, Lapointe NWR, Marchetti MP. Non-indigenous fishes and their role in freshwater fish imperilment. In: Closs GP, Krkosek M, Olden JD, editors. Conservation of Freshwater Fishes. Cambridge University Press; 2016. pp. 238–269.
Moyle PB, Light T. Biological invasions of fresh water: Empirical rules and assembly theory. Biol. Conserv. 1996;78:149–161. doi: 10.1016/0006-3207(96)00024-9. DOI
Martinez PJ, Chart TE, Trammell MA, Wullschleger JG, Bergersen EP. Fish species composition before and after construction of a main stem reservoir on the White River, Colorado. Environ. Biol. Fish. 1994;40:227–239. doi: 10.1007/BF00002509. DOI
Carey MP, Sanderson BL, Barnas KA, Olden JD. Native invaders—Challenges for science, management, policy, and society. Front. Ecol. Environ. 2012;10:373–381. doi: 10.1890/110060. DOI
Cucherousset J, Olden JD. Ecological impacts of non-native freshwater fishes. Fisheries (Bethesda) 2011;36:215–230. doi: 10.1080/03632415.2011.574578. DOI
Havel JE, Lee CE, Vander Zanden MJ. Do reservoirs facilitate invasions into landscapes? Bioscience. 2005;55:518. doi: 10.1641/0006-3568(2005)055[0518:DRFIIL]2.0.CO;2. DOI
Murphy CA, Arismendi I, Taylor GA, Johnson SL. Evidence for lasting alterations to aquatic food webs with short-duration reservoir draining. PLoS ONE. 2019;14:1–12. PubMed PMC
Reid AJ, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019;94:849–873. doi: 10.1111/brv.12480. PubMed DOI
Pfauserová N, Slavík O, Horký P, Kolářová J, Randák T. Migration of non-native predator asp (Leuciscus aspius) from a reservoir poses a potential threat to native species in tributaries. Water (Basel) 2019;11:1306.
Hladík M, Kubečka J. The effect of water level fluctuation on tributary spawning migration of reservoir fish. Ecohydrol. Hydrobiol. 2004;4:449–457.
Morán-López R, Uceda Tolosa O. Relative leaping abilities of native versus invasive cyprinids as criteria for selective barrier design. Biol. Invas. 2017;19:1243–1253. doi: 10.1007/s10530-016-1328-6. DOI
Winter JD. Underwater biotelemetry. In: Nielson LA, Johnson DL, editors. Fisheries Techniques. American Fisheries Society; 1983. pp. 371–395.
Vostradovský J, Novák M. Some opinions in regard to the Lipno Valley reservoir in 1958. Anim. Husb. 1959;4:877–888.
Balon EK. Reproductive guilds of fishes: A proposal and definition. J. Fish. Res. Board Can. 1975;32:821–864. doi: 10.1139/f75-110. DOI
Schiemer F, Waidbacher H. Strategies for conservation of a Danubian fish fauna. River Conserv. Manage. 1992 doi: 10.1016/0006-3207(92)90983-t. DOI
Molls F. New insights into the migration and habitat use by bream and white bream in the floodplain of the River Rhine. J. Fish Biol. 1999;55:1187–1200. doi: 10.1111/j.1095-8649.1999.tb02069.x. DOI
Kafemann R, Adlerstein S, Neukamm R. Variation in otolith strontium and calcium ratios as an indicator of life-history strategies of freshwater fish species within a brackish water system. Fish. Res. 2000;46:313. doi: 10.1016/S0165-7836(00)00156-9. DOI
le Pichon C, et al. Summer use of the tidal freshwaters of the River Seine by three estuarine fish: Coupling telemetry and GIS spatial analysis. Estuar. Coast. Shelf Sci. 2017;196:83. doi: 10.1016/j.ecss.2017.06.028. DOI
Jurajda P, Roche K, Halačka K, Mrkvová M, Zukal J. Winter activity of common bream (Abramis brama L.) in a European reservoir. Fish. Manage. Ecol. 2018;25:163–171. doi: 10.1111/fme.12275. DOI
Lyons J, Lucas MC. The combined use of acoustic tracking and echosounding to investigate the movement and distribution of common bream (Abramis brama) in the River Trent, England. Hydrobiologia. 2002;483:265–273. doi: 10.1023/A:1021364504129. DOI
Gardner CJ, Deeming DC, Eady PE. Seasonal water level manipulation for flood risk management influences home-range size of common bream Abramis brama L. in a lowland river. River Res. Appl. 2015;31:165–172. doi: 10.1002/rra.2727. DOI
Winter ER, Hindes AM, Lane S, Britton JR. Movements of common bream Abramis brama in a highly connected, lowland wetland reveal sub-populations with diverse migration strategies. Freshw. Biol. 2021;66:1410. doi: 10.1111/fwb.13726. DOI
Gardner CJ, Deeming DC, Eady PE. Seasonal movements with shifts in lateral and longitudinal habitat use by common bream, Abramis brama, in a heavily modified lowland river. Fish. Manage. Ecol. 2013;20:315–325. doi: 10.1111/fme.12014. DOI
Skov C, et al. Sizing up your enemy: Individual predation vulnerability predicts migratory probability. Proc. R. Soc. B Biol. Sci. 2011;278:1414–1418. doi: 10.1098/rspb.2010.2035. PubMed DOI PMC
Cala P. On the ecology of ide Leuciscus idus (L.) in the River Kävlingean, South Sweden. Rep. Inst. Freshw. Res. Drottningholm. 1970;50:45–99.
Winter HV, Fredrich F. Migratory behaviour of ide: A comparison between the lowland rivers Elbe, Germany, and Vecht, The Netherlands. J. Fish Biol. 2003;63:871–880. doi: 10.1046/j.1095-8649.2003.00193.x. DOI
de Leeuw JJ, Winter HV. Migration of rheophilic fish in the large lowland rivers Meuse and Rhine, the Netherlands. Fish. Manage. Ecol. 2008;15:409–415. doi: 10.1111/j.1365-2400.2008.00626.x. DOI
Kulíšková P, Horký P, Slavík O, Jones JI. Factors influencing movement behaviour and home range size in ide Leuciscus idus. J. Fish Biol. 2009;74:1269–1279. doi: 10.1111/j.1095-8649.2009.02198.x. PubMed DOI
Rohtla M, et al. Review and meta-analysis of the environmental biology and potential invasiveness of a poorly-studied cyprinid, the Ide Leuciscus idus. Rev. Fish. Sci. Aquac. 2020;29:1–37.
Fredrich F. Long-term investigations of migratory behaviour of asp (Aspius aspius L.) in the middle part of the Elbe River, Germany. J. Appl. Ichthyol. 2003;19:294–302. doi: 10.1046/j.1439-0426.2003.00504.x. DOI
Šmejkal M, et al. Climbing up the ladder: Male reproductive behaviour changes with age in a long-lived fish. Behav. Ecol. Sociobiol. 2021 doi: 10.1007/s00265-020-02961-7. DOI
Šmejkal M, et al. Seasonal and daily protandry in a cyprinid fish. Sci. Rep. 2017;7:1–9. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Merciai R, et al. First record of the asp Leuciscus aspius introduced into the Iberian Peninsula. Limnetica. 2018;37:341–344.
Horký P, Slavík O. Diel and seasonal rhythms of asp Leuciscus aspius (L.) in a riverine environment. Ethol. Ecol. Evol. 2017;29:449–459. doi: 10.1080/03949370.2016.1230560. DOI
Allouche S, Thévenet A, Gaudin P. Habitat use by chub (Leuciscus cephalus L. 1766) in a large river, the French Upper Rhone, as determined by radiotelemetry. Arch. Hydrobiol. 1999;145:219–236. doi: 10.1127/archiv-hydrobiol/145/1999/219. DOI
Horký P, Slavík O, Bartoš L, Kolářová J, Randák T. Behavioural pattern in cyprinid fish below a weir as detected by radio telemetry. J. Appl. Ichthyol. 2007;23:679. doi: 10.1111/j.1439-0426.2007.00848.x. DOI
Sandlund OT, Museth J, Øistad S. Migration, growth patterns, and diet of pike (Esox lucius) in a river reservoir and its inflowing river. Fish. Res. 2016;173:53–60. doi: 10.1016/j.fishres.2015.08.010. DOI
Koed A, Balleby K, Mejlhede P, Aarestrup K. Annual movement of adult pike (Esox lucius L.) in a lowland river. Ecol. Freshw. Fish. 2006;15:191. doi: 10.1111/j.1600-0633.2006.00136.x. DOI
Kobler A, Klefoth T, Arlinghaus R. Site fidelity and seasonal changes in activity centre size of female pike Esox lucius in a small lake. J. Fish Biol. 2008 doi: 10.1111/j.1095-8649.2008.01952.x. DOI
Kobler A, Klefoth T, Mehner T, Arlinghaus R. Coexistence of behavioural types in an aquatic top predator: A response to resource limitation? Oecologia. 2009 doi: 10.1007/s00442-009-1415-9. PubMed DOI
Boeuf G, Falcón J. Photoperiod and growth in fish. Vie et Milieu. 2001;51:247–266.
Pfauserová, N., Slavík, O. & Horký, P. DATA: An increase in reservoir water levels signals non-native fish species to migrate into tributaries. Mendeley Data1 (2021).
Stroup WW. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press; 2012.
Hastie TJ, Tibshirani RJ. Generalized Additive Models. Chapman & Hall/CRC; 1990.
Wood SN. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC; 2017.
Eubank RL. Approximate regression models and splines. Commun. Stat. Theory Methods. 1984;13:433–484. doi: 10.1080/03610928408828695. DOI
Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011;73:3–36. doi: 10.1111/j.1467-9868.2010.00749.x. DOI
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
McCulloch CE, Searle SR, Neuhaus JM. Generalized, Linear, and Mixed Models. Wiley; 2008.
Hurlbert SH. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984;54:187–211. doi: 10.2307/1942661. DOI
Maitland PS, Campbell RN. Freshwater Fishes of the British Isles. HarperCollins Publishers; 1992.
Kottelat M, Freyhof JJ. Handbook of European freshwater fishes. Copeia. 2007 doi: 10.1643/OT-08-098a.1. DOI
Lucas MC, et al. Spatio-temporal variations in the distribution and abundance of fish in the Yorkshire Ouse system. Sci. Total Environ. 1998;210–211:437. doi: 10.1016/S0048-9697(98)00030-8. DOI
Lucas MC. The influence of environmental factors on movements of lowland-river fish in the Yorkshire Ouse system. Sci. Total Environ. 2000;251–252:223. doi: 10.1016/S0048-9697(00)00385-5. PubMed DOI
Mehner T, Diekmann M, Brämick U, Lemcke R. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshw. Biol. 2005;50:70–85. doi: 10.1111/j.1365-2427.2004.01294.x. DOI
Johnson PTJ, Olden JD, van der Zanden MJ. Dam invaders: Impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ. 2008;6:357–363. doi: 10.1890/070156. DOI
Liew JH, Tan HH, Yeo DCJ. Dammed rivers: Impoundments facilitate fish invasions. Freshw. Biol. 2016;61:1421–1429. doi: 10.1111/fwb.12781. DOI
Brito MFG, Daga VS, Vitule JRS. Fisheries and biotic homogenization of freshwater fish in the Brazilian semiarid region. Hydrobiologia. 2020;847:3877–3895. doi: 10.1007/s10750-020-04236-8. DOI
Kärgenberg E, et al. Migration patterns of a potamodromous piscivore, asp (Leuciscus aspius), in a river–lake system. J. Fish Biol. 2020;97:996–1008. doi: 10.1111/jfb.14454. PubMed DOI
Poulet N, Beaulaton L, Dembski S. Time trends in fish populations in metropolitan France: Insights from national monitoring data. J. Fish Biol. 2011;79:1436–1452. doi: 10.1111/j.1095-8649.2011.03084.x. PubMed DOI
Elvira, B. Identification of Non-native freshwater Fishes Established in Europe and Assessment of Their Potential Threats to the Biological Diversity. Convention on the Conservation of European Wildlife and Natural Habitats, 35 (2001).
Global Invasive Species Database (GISD). Species Profile Leuciscus idus (2021). http://www.iucngisd.org/gisd/species.php?sc=613. Accessed 15 Sept 2021.
Nico, L., Fuller, P. & Neilson, M. Leuciscus idus (Linnaeus, 1758): U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville (2021). https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=557. Accessed 15 Sept 2021.
Ovidio M, Philippart JC. The impact of small physical obstacles on upstream movements of six species of fish: Synthesis of a 5-year telemetry study in the River Meuse basin. Hydrobiologia. 2002;483:55–69. doi: 10.1023/A:1021398605520. DOI
Hansen JH, et al. Ecological consequences of animal migration: Prey partial migration affects predator ecology and prey communities. Ecosystems. 2020;23:292–306. doi: 10.1007/s10021-019-00402-9. DOI
Brodersen J, Nilsson PA, Hansson L-A, Skov C, Brönmark C. Condition-dependent individual decision-making determines cyprinid partial migration. Ecology. 2008;89:1195–1200. doi: 10.1890/07-1318.1. PubMed DOI
Chapman BB, et al. To boldly go: Individual differences in boldness influence migratory tendency. Ecol. Lett. 2011;14:871–876. doi: 10.1111/j.1461-0248.2011.01648.x. PubMed DOI
Harrison PM, et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota) Behav. Ecol. 2015;26:483–492. doi: 10.1093/beheco/aru216. DOI
Rehage JS, Cote J, Sih A. The role of dispersal behaviour and personality in post-establishment spread. In: Weis JS, Sol D, editors. Biological Invasions and Animal Behaviour. Cambridge University Press; 2016. pp. 96–116.
Juette T, Cucherousset J, Cote J. Animal personality and the ecological impacts of freshwater non-native species. Curr. Zool. 2014;60:417–427. doi: 10.1093/czoolo/60.3.417. DOI
Sol D, Maspons J. Life history, behaviour and invasion success. Biol. Invas. Anim. Behav. 2016 doi: 10.1017/cbo9781139939492.006. DOI
Sol D, Weis J. Highlights and insights from “biological invasions and animal behaviour". Aquat. Invas. 2019;14:551–565. doi: 10.3391/ai.2019.14.3.12. DOI