Sumoylated NHR-25/NR5A regulates cell fate during C. elegans vulval development

. 2013 ; 9 (12) : e1003992. [epub] 20131212

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid24348269

Grantová podpora
R01 CA020535 NCI NIH HHS - United States
P40 OD010440 NIH HHS - United States
CA20535 NCI NIH HHS - United States
#234765 CIHR - Canada
R21 ES021412 NIEHS NIH HHS - United States
ES021412-01 NIEHS NIH HHS - United States
R37 CA020535 NCI NIH HHS - United States

Odkazy

PubMed 24348269
PubMed Central PMC3861103
DOI 10.1371/journal.pgen.1003992
PII: PGENETICS-D-13-00622
Knihovny.cz E-zdroje

Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner.

Zobrazit více v PubMed

Taubert S, Ward JD, Yamamoto KR (2011) Nuclear hormone receptors in nematodes: Evolution and function. Molecular and Cellular Endocrinology 334: 49–55 doi:10.1016/j.mce.2010.04.021 PubMed DOI PMC

Robinson-Rechavi M, Maina CV, Gissendanner CR, Laudet V, Sluder A (2005) Explosive Lineage-Specific Expansion of the Orphan Nuclear Receptor HNF4 in Nematodes. J Mol Evol 60: 577–586 doi:10.1007/s00239-004-0175-8 PubMed DOI

Gissendanner CR, Sluder AE (2000) nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev Biol 221: 259–272 doi:10.1006/dbio.2000.9679 PubMed DOI

Asahina M, Ishihara T, Jindra M, Kohara Y, Katsura I, et al. (2000) The conserved nuclear receptor Ftz-F1 is required for embryogenesis, moulting and reproduction in Caenorhabditis elegans . Genes Cells 5: 711–723. PubMed

Frand AR, Russel S, Ruvkun G (2005) Functional Genomic Analysis of C. elegans Molting. PLoS Biol 3: e312 doi:10.1371/journal.pbio.0030312 PubMed DOI PMC

Hada K, Asahina M, Hasegawa H, Kanaho Y, Slack FJ, et al. (2010) The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition. Dev Biol 344: 1100–1109 doi:10.1016/j.ydbio.2010.05.508 PubMed DOI PMC

Chen Z, Eastburn DJ, Han M (2004) The Caenorhabditis elegans nuclear receptor gene nhr-25 regulates epidermal cell development. Mol Cell Biol 24: 7345–7358 doi:10.1128/MCB.24.17.7345-7358.2004 PubMed DOI PMC

Asahina M, Valenta T, Silhánková M, Korinek V, Jindra M (2006) Crosstalk between a nuclear receptor and beta-catenin signaling decides cell fates in the C. elegans somatic gonad. Dev Cell 11: 203–211 doi:10.1016/j.devcel.2006.06.003 PubMed DOI

Schimmer BP, White PC (2010) Minireview: Steroidogenic Factor 1: Its Roles in Differentiation, Development, and Disease. Molecular Endocrinology 24: 1322–1337 doi:10.1210/me.2009-0519 PubMed DOI PMC

Hammer GD, Krylova I, Zhang Y, Darimont BD, Simpson K, et al. (1999) Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell 3: 521–526. PubMed

Fayard E, Auwerx J, Schoonjans K (2004) LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends in Cell Biology 14: 250–260 doi:10.1016/j.tcb.2004.03.008 PubMed DOI

Mullaney BC, Blind RD, Lemieux GA, Perez CL, Elle IC, et al. (2010) Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25 . Cell Metab 12: 398–410 doi:10.1016/j.cmet.2010.08.013 PubMed DOI PMC

van der Veen AG, Ploegh HL (2012) Ubiquitin-Like Proteins. Annu Rev Biochem 81: 323–357 doi:10.1146/annurev-biochem-093010-153308 PubMed DOI

Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nature 11: 861–871 doi:10.1038/nrm3011 PubMed DOI PMC

Cheng J, Kang X, Zhang S, Yeh ETH (2007) SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1α during Hypoxia. Cell 131: 584–595 doi:10.1016/j.cell.2007.08.045 PubMed DOI PMC

Taylor DL, Ho JCY, Oliver A, Watts FZ (2002) Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J Cell Sci 115: 1113–1122. PubMed

Holmstrom S, Van Antwerp ME, Iñiguez-Lluhí JA (2003) Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proc Natl Acad Sci USA 100: 15758–15763 doi:10.1073/pnas.2136933100 PubMed DOI PMC

Reboul J, Vaglio P, Rual J-F, Lamesch P, Martinez M, et al. (2003) C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 34: 35–41 doi:10.1038/ng1140 PubMed DOI

Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, et al. (2004) The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans . Genes Dev 18: 2380–2391 doi:10.1101/gad.1227104 PubMed DOI PMC

Lee MB, Lebedeva LA, Suzawa M, Wadekar SA, Desclozeaux M, et al. (2005) The DEAD-box protein DP103 (Ddx20 or Gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol Cell Biol 25: 1879–1890 doi:10.1128/MCB.25.5.1879-1890.2005 PubMed DOI PMC

Chalkiadaki A, Talianidis I (2005) SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol 25: 5095–5105 doi:10.1128/MCB.25.12.5095-5105.2005 PubMed DOI PMC

Poulin G, Dong Y, Fraser AG, Hopper NA, Ahringer J (2005) Chromatin regulation and sumoylation in the inhibition of Ras-induced vulval development in Caenorhabditis elegans . EMBO J 24: 2613–2623 doi:10.1038/sj.emboj.7600726 PubMed DOI PMC

Kroetz MB, Hochstrasser M (2009) Identification of SUMO-interacting proteins by yeast two-hybrid analysis. Methods Mol Biol 497: 107–120 doi:_10.1007/978-1-59745-566-4_7 PubMed DOI PMC

Lin D-Y, Huang Y-S, Jeng J-C, Kuo H-Y, Chang C-C, et al. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24: 341–354 doi:10.1016/j.molcel.2006.10.019 PubMed DOI

Takahashi H, Hatakeyama S, Saitoh H, Nakayama KI (2005) Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem 280: 5611–5621 doi:10.1074/jbc.M408130200 PubMed DOI

Ren J, Gao X, Jin C, Zhu M, Wang X, et al. (2009) Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics 9: 3409–3412 doi:10.1002/pmic.200800646 PubMed DOI

Campbell LA, Faivre EJ, Show MD, Ingraham JG, Flinders J, et al. (2008) Decreased Recognition of SUMO-Sensitive Target Genes following Modification of SF-1 (NR5A1). Mol Cell Biol 28: 7476–7486 doi:10.1128/MCB.00103-08 PubMed DOI PMC

Leight ER, Glossip D, Kornfeld K (2005) Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development 132: 1047–1056 doi:10.1242/dev.01664 PubMed DOI

Zhang H, Smolen GA, Palmer R, Christoforou A, Van Den Heuvel S, et al. (2004) SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2. Nat Genet 36: 507–511 doi:10.1038/ng1336 PubMed DOI

Chen W-Y, Lee W-C, Hsu N-C, Huang F, Chung B-C (2004) SUMO modification of repression domains modulates function of nuclear receptor 5A1 (steroidogenic factor-1). J Biol Chem 279: 38730–38735 doi:10.1074/jbc.M405006200 PubMed DOI

Talamillo A, Herboso L, Pirone L, Pérez C, González M, et al. (2013) Scavenger Receptors Mediate the Role of SUMO and Ftz-f1 in Drosophila Steroidogenesis. PLoS Genet 9: e1003473 doi:10.1371/journal.pgen.1003473.s003 PubMed DOI PMC

Kim S, Brostromer E, Xing D, Jin J, Chong S, et al. (2013) Probing Allostery Through DNA. Science 339: 816–819 doi:10.1126/science.1229223 PubMed DOI PMC

Silhánková M, Jindra M, Asahina M (2005) Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans . J Cell Sci 118: 223–232 doi:10.1242/jcs.01609 PubMed DOI

Dutt A, Canevascini S, Froehli-Hoier E, Hajnal A (2004) EGF Signal Propagation during C. elegans Vulval Development Mediated by ROM-1 Rhomboid. PLoS Biol 2: e334 doi:10.1371/journal.pbio.0020334 PubMed DOI PMC

Sarov M, Murray JI, Schanze K, Pozniakovski A, Niu W, et al. (2012) A Genome-Scale Resource for in vivo Tag-Based Protein Function Exploration in C. elegans . Cell 150: 855–866 doi:10.1016/j.cell.2012.08.001 PubMed DOI PMC

Kaminsky R, Denison C, Bening-Abu-Shach U, Chisholm AD, Gygi SP, et al. (2009) SUMO Regulates the Assembly and Function of a Cytoplasmic Intermediate Filament Protein in C. elegans . Dev Cell 17: 724–735 doi:10.1016/j.devcel.2009.10.005 PubMed DOI PMC

Cui M, Chen J, Myers TR, Hwang BJ, Sternberg PW, et al. (2006) SynMuv Genes Redundantly Inhibit lin-3/EGF Expression to Prevent Inappropriate Vulval Induction in C. elegans . Dev Cell 10: 667–672 doi:10.1016/j.devcel.2006.04.001 PubMed DOI

Sternberg PW (2005) Vulval development. WormBook: the online review of C. elegans biology 1–28 doi:10.1895/wormbook.1.6.1 PubMed DOI PMC

Hwang BJ, Sternberg PW (2004) A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. Development 131: 143–151 doi:10.1242/dev.00924 PubMed DOI

Chen S-H, Masuno K, Cooper SB, Yamamoto KR (2013) Incoherent feed-forward regulatory logic underpinning glucocorticoid receptor action. Proceedings of the National Academy of Sciences doi:10.1073/pnas.1216108110 PubMed DOI PMC

Hwang EJ, Lee JM, Jeong J, Park JH, Yang Y, et al. (2009) SUMOylation of RORalpha potentiates transcriptional activation function. Biochemical and Biophysical Research Communications 378: 513–517 doi:10.1016/j.bbrc.2008.11.072 PubMed DOI

Sentis S, Le Romancer M, Bianchin C, Rostan M-C, Corbo L (2005) Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity. Molecular Endocrinology 19: 2671–2684 doi:10.1210/me.2005-0042 PubMed DOI

Adamson AL, Kenney S (2001) Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75: 2388–2399 doi:10.1128/JVI.75.5.2388-2399.2001 PubMed DOI PMC

Bridgham JT, Eick GN, Larroux C, Deshpande K, Harms MJ, et al. (2010) Protein Evolution by Molecular Tinkering: Diversification of the Nuclear Receptor Superfamily from a Ligand-Dependent Ancestor. PLoS Biol 8: e1000497 doi:10.1371/journal.pbio.1000497.g006 PubMed DOI PMC

Onitake A, Yamanaka K, Esaki M, Ogura T (2012) Caenorhabditis elegans fidgetin homolog FIGL-1, a nuclear-localized AAA ATPase, binds to SUMO. Journal of Structural Biology 179: 143–151 doi:10.1016/j.jsb.2012.04.022 PubMed DOI

Tatham MH, Geoffroy M-C, Shen L, Plechanovova A, Hattersley N, et al. (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538–546 doi:10.1038/ncb1716 PubMed DOI

Yang F-M, Pan C-T, Tsai H-M, Chiu T-W, Wu M-L, et al. (2008) Liver receptor homolog-1 localization in the nuclear body is regulated by sumoylation and cAMP signaling in rat granulosa cells. FEBS Journal 276: 425–436 doi:10.1111/j.1742-4658.2008.06785.x PubMed DOI

Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Meth 1–9 doi:10.1038/nmeth.2641 PubMed DOI PMC

Deplancke B, Mukhopadhyay A, Ao W, Elewa AM, Grove CA, et al. (2006) A Gene-Centered C. elegans Protein-DNA Interaction Network. Cell 125: 1193–1205 doi:10.1016/j.cell.2006.04.038 PubMed DOI

Alberti S, Gitler AD, Lindquist S (2007) A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae . Yeast 24: 913–919 doi:10.1002/yea.1502 PubMed DOI PMC

Frøkjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, et al. (2008) Single-copy insertion of transgenes in Caenorhabditis elegans . Nat Genet 40: 1375–1383 doi:10.1038/ng.248 PubMed DOI PMC

Korzelius J, The I, Ruijtenberg S, Portegijs V, Xu H, et al. (2010) C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability. Dev Biol 1–12 doi:10.1016/j.ydbio.2010.12.009 PubMed DOI PMC

Deplancke B, Vermeirssen V, Arda HE, Martinez NJ, Walhout AJM (2006) Gateway-Compatible Yeast One-Hybrid Screens. Cold Spring Harbor Protocols 2006: pdb.prot4590–pdb.prot4590 doi:10.1101/pdb.prot4590 PubMed DOI

Reverter D, Lima CD (2009) Preparation of SUMO proteases and kinetic analysis using endogenous substrates. Methods Mol Biol 497: 225–239 doi:_10.1007/978-1-59745-566-4_15 PubMed DOI PMC

Yunus AA, Lima CD (2005) Purification and activity assays for Ubc9, the ubiquitin-conjugating enzyme for the small ubiquitin-like modifier SUMO. Meth Enzymol 398: 74–87 doi:10.1016/S0076-6879(05)98008-7 PubMed DOI

Yunus AA, Lima CD (2009) Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. Methods Mol Biol 497: 167–186 doi:_10.1007/978-1-59745-566-4_11 PubMed DOI PMC

Brenner S (1974) The genetics of Caenorhabditis elegans . Genetics 77: 71–94. PubMed PMC

Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10: 3959–3970. PubMed PMC

Kramer JM, French RP, Park EC, Johnson JJ (1990) The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 10: 2081–2089. PubMed PMC

Silhánková M, Port F, Harterink M, Basler K, Korswagen HC (2010) Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J 29: 4094–4105 doi:10.1038/emboj.2010.278 PubMed DOI PMC

Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans . Gene 263: 103–112. PubMed

Seetharaman A, Cumbo P, Bojanala N, Gupta BP (2010) Conserved mechanism of Wnt signaling function in the specification of vulval precursor fates in C. elegans and C. briggsae . Dev Biol 346: 128–139 doi:10.1016/j.ydbio.2010.07.003 PubMed DOI

Ueda H, Hirose S (1991) Defining the sequence recognized with BmFTZ-F1, a sequence specific DNA binding factor in the silkworm, Bombyx mori, as revealed by direct sequencing of bound oligonucleotides and gel mobility shift competition analysis. Nucleic Acids Res 19: 3689–3693. PubMed PMC

Hill RJ, Sternberg PW (1992) The gene lin-3 encodes an inductive signal for vulval development in C. elegans . Nature 358: 470–476 doi:10.1038/358470a0 PubMed DOI

Aroian RV, Koga M, Mendel JE, Ohshima Y, Sternberg PW (1990) The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348: 693–699 doi:10.1038/348693a0 PubMed DOI

Beitel GJ, Clark SG, Horvitz HR (1990) Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 348: 503–509 doi:10.1038/348503a0 PubMed DOI

Han M, Sternberg PW (1990) let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 63: 921–931. PubMed

Chen N, Greenwald I (2004) The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev Cell 6: 183–192. PubMed

Thompson KE, Bashor CJ, Lim WA, Keating AE (2012) SYNZIP Protein Interaction Toolbox: in Vitro and in Vivo Specifications of Heterospecific Coiled-Coil Interaction Domains. ACS Synth Biol 1: 118–129 doi:10.1021/sb200015u PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...