SUMO as a nuclear hormone receptor effector: New insights into combinatorial transcriptional regulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 CA020535
NCI NIH HHS - United States
R37 CA020535
NCI NIH HHS - United States
PubMed
25254154
PubMed Central
PMC4165532
DOI
10.4161/worm.29317
PII: 2014WORM153
Knihovny.cz E-zdroje
- Klíčová slova
- C. elegans, NHR-25, SMO-1, cell fate, gene expression, nuclear hormone receptor, signaling, sumoylation, transcription, vulva development,
- Publikační typ
- časopisecké články MeSH
Animal development is driven by robust, cell-specific gene expression programs. Understanding mechanistically how a single transcription factor (TF) can govern distinct programs with exquisite precision is a major challenge. We view TFs as signal integrators, taking information from co-regulator interactions, post-translational modifications, other transcription factors, chromatin state, DNA sequence and in some cases, specific noncovalent ligands, to determine the collection of genes regulated by a TF at any given time. Here, we describe a reductionist approach to combinatorial transcriptional regulation, focusing on a single C. elegans TF, the nuclear hormone receptor NHR-25, and a single post-translational modification, SUMO. We suggest that the ratio of sumoylated to unsumoylated NHR-25 could specify a switch-like cell-fate decision during vulval development. Direct examination of this "SUMO ratio" in vivo is challenging and we discuss possible solutions going forward. We also consider how sumoylation of multiple substrates might be coordinated during vulval development. Finally, we note that iteration of this approach could leverage our sumoylation findings to define the roles of other effectors of NHR-25 in the developing vulva and in other tissues.
Zobrazit více v PubMed
Ward JD, Bojanala N, Bernal T, Ashrafi K, Asahina M, Yamamoto KR. Sumoylated NHR-25/NR5A regulates cell fate during C. elegans vulval development. PLoS Genet. 2013;9:e1003992. doi: 10.1371/journal.pgen.1003992. PubMed DOI PMC
Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010;11:861–71. doi: 10.1038/nrm3011. PubMed DOI PMC
Lee FY, Faivre EJ, Suzawa M, Lontok E, Ebert D, Cai F, Belsham DD, Ingraham HA. Eliminating SF-1 (NR5A1) sumoylation in vivo results in ectopic hedgehog signaling and disruption of endocrine development. Dev Cell. 2011;21:315–27. doi: 10.1016/j.devcel.2011.06.028. PubMed DOI PMC
Chalkiadaki A, Talianidis I. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol. 2005;25:5095–105. doi: 10.1128/MCB.25.12.5095-5105.2005. PubMed DOI PMC
Campbell LA, Faivre EJ, Show MD, Ingraham JG, Flinders J, Gross JD, Ingraham HA. Decreased recognition of SUMO-sensitive target genes following modification of SF-1 (NR5A1) Mol Cell Biol. 2008;28:7476–86. doi: 10.1128/MCB.00103-08. PubMed DOI PMC
Yang F-M, Pan C-T, Tsai H-M, Chiu T-W, Wu M-L, Hu M-C. Liver receptor homolog-1 localization in the nuclear body is regulated by sumoylation and cAMP signaling in rat granulosa cells. FEBS J. 2009;276:425–36. doi: 10.1111/j.1742-4658.2008.06785.x. PubMed DOI
Talamillo A, Herboso L, Pirone L, Pérez C, González M, Sánchez J, Mayor U, Lopitz-Otsoa F, Rodriguez MS, Sutherland JD, et al. Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis. PLoS Genet. 2013;9:e1003473. doi: 10.1371/journal.pgen.1003473. PubMed DOI PMC
Li LA, Chiang EF, Chen JC, Hsu NC, Chen YJ, Chung B-C. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol. 1999;13:1588–98. doi: 10.1210/mend.13.9.0349. PubMed DOI
Hwang BJ, Sternberg PW. A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. Development. 2004;131:143–51. doi: 10.1242/dev.00924. PubMed DOI
Sternberg PW. Vulval development. WormBook: the online review of C. elegans biology 2005;:1–28. PubMed PMC
Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B, Ronai Z. The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes Dev. 2004;18:2380–91. doi: 10.1101/gad.1227104. PubMed DOI PMC
Adamson AL, Kenney S. Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol. 2001;75:2388–99. doi: 10.1128/JVI.75.5.2388-2399.2001. PubMed DOI PMC
Purvis JE, Lahav G. Encoding and decoding cellular information through signaling dynamics. Cell. 2013;152:945–56. doi: 10.1016/j.cell.2013.02.005. PubMed DOI PMC
Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999;283:381–7. doi: 10.1126/science.283.5400.381. PubMed DOI
Li G, Qian H. Kinetic timing: a novel mechanism that improves the accuracy of GTPase timers in endosome fusion and other biological processes. Traffic. 2002;3:249–55. doi: 10.1034/j.1600-0854.2002.030402.x. PubMed DOI
Monsalve GC, Frand AR. Toward a unified model of developmental timing: A “molting” approach. Worm. 2012;1:221–30. doi: 10.4161/worm.20874. PubMed DOI PMC
Van Wynsberghe PM, Finnegan EF, Stark T, Angelus EP, Homan KE, Yeo GW, Pasquinelli AE. The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans. Dev Biol. 2014;390:126–35. doi: 10.1016/j.ydbio.2014.03.017. PubMed DOI PMC
Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 1997;88:97–107. doi: 10.1016/S0092-8674(00)81862-0. PubMed DOI
Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 1996;135:1457–70. doi: 10.1083/jcb.135.6.1457. PubMed DOI PMC
Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell. 2008;134:668–78. doi: 10.1016/j.cell.2008.07.039. PubMed DOI
Miersch S, Sidhu SS. Synthetic antibodies: concepts, potential and practical considerations. Methods. 2012;57:486–98. doi: 10.1016/j.ymeth.2012.06.012. PubMed DOI
Shyu YJ, Hiatt SM, Duren HM, Ellis RE, Kerppola TK, Hu C-D. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc. 2008;3:588–96. doi: 10.1038/nprot.2008.16. PubMed DOI
Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods. 2013;10:1028–34. doi: 10.1038/nmeth.2641. PubMed DOI PMC
Kaminsky R, Denison C, Bening-Abu-Shach U, Chisholm AD, Gygi SP, Broday L. SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Dev Cell. 2009;17:724–35. doi: 10.1016/j.devcel.2009.10.005. PubMed DOI PMC
Hay RT. SUMO: a history of modification. Mol Cell. 2005;18:1–12. doi: 10.1016/j.molcel.2005.03.012. PubMed DOI
Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 2010;428:133–45. doi: 10.1042/BJ20100158. PubMed DOI PMC
Leight ER, Glossip D, Kornfeld K. Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development. 2005;132:1047–56. doi: 10.1242/dev.01664. PubMed DOI
Zhang H, Smolen GA, Palmer R, Christoforou A, van den Heuvel S, Haber DA. SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2. Nat Genet. 2004;36:507–11. doi: 10.1038/ng1336. PubMed DOI
Gee F, Fisher K, Klemstein U, Poulin GB. An RNAi-based dimorphic genetic screen identified the double bromodomain protein BET-1 as a sumo-dependent attenuator of RAS-mediated signalling. PLoS One. 2013;8:e83659. doi: 10.1371/journal.pone.0083659. PubMed DOI PMC
Pferdehirt RR, Meyer BJ. SUMOylation is essential for sex-specific assembly and function of the Caenorhabditis elegans dosage compensation complex on X chromosomes. Proceedings of the National Academy of Sciences 2013 PubMed PMC