Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range

. 2021 Apr 29 ; 11 (1) : 9236. [epub] 20210429

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33927232
Odkazy

PubMed 33927232
PubMed Central PMC8085240
DOI 10.1038/s41598-021-88348-8
PII: 10.1038/s41598-021-88348-8
Knihovny.cz E-zdroje

Camera-trapping and capture-recapture models are the most widely used tools for estimating densities of wild felids that have unique coat patterns, such as Eurasian lynx. However, studies dealing with this species are predominantly on a short-term basis and our knowledge of temporal trends and population persistence is still scarce. By using systematic camera-trapping and spatial capture-recapture models, we estimated lynx densities and evaluated density fluctuations, apparent survival, transition rate and individual's turnover during five consecutive seasons at three different sites situated in the Czech-Slovak-Polish borderland at the periphery of the Western Carpathians. Our density estimates vary between 0.26 and 1.85 lynx/100 km2 suitable habitat and represent the lowest and the highest lynx densities reported from the Carpathians. We recorded 1.5-4.1-fold changes in asynchronous fluctuated densities among all study sites and seasons. Furthermore, we detected high individual's turnover (on average 46.3 ± 8.06% in all independent lynx and 37.6 ± 4.22% in adults) as well as low persistence of adults (only 3 out of 29 individuals detected in all seasons). The overall apparent survival rate was 0.63 ± 0.055 and overall transition rate between sites was 0.03 ± 0.019. Transition rate of males was significantly higher than in females, suggesting male-biased dispersal and female philopatry. Fluctuating densities and high turnover rates, in combination with documented lynx mortality, indicate that the population in our region faces several human-induced mortalities, such as poaching or lynx-vehicle collisions. These factors might restrict population growth and limit the dispersion of lynx to other subsequent areas, thus undermining the favourable conservation status of the Carpathian population. Moreover, our study demonstrates that long-term camera-trapping surveys are needed for evaluation of population trends and for reliable estimates of demographic parameters of wild territorial felids, and can be further used for establishing successful management and conservation measures.

Zobrazit více v PubMed

Hayward MW, et al. FORUM: Ecologists need robust survey designs, sampling and analytical methods. J. Appl. Ecol. 2015;52:286–290. doi: 10.1111/1365-2664.12408. DOI

Karanth KU. Estimating tiger Pantheratigris populations from camera-trap data using capture-recapture models. Biol. Conserv. 1995;71:333–338. doi: 10.1016/0006-3207(94)00057-W. DOI

O’Connell AF, Nichols JD, Katranth KU. Camera Traps in Animal Ecology: Methods and Analyses. Springer; 2011.

Molinari-Jobin A, et al. Monitoring in the presence of species misidentification: The case of the Eurasian lynx in the Alps. Anim. Conserv. 2012;15:266–273. doi: 10.1111/j.1469-1795.2011.00511.x. DOI

López-Bao JV, et al. Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Sci. Rep. 2018;8:2177. doi: 10.1038/s41598-018-20675-9. PubMed DOI PMC

Foster RJ, Harmsen BJ. A critique of density estimation from camera-trap data. J. Wildl. Manage. 2012;76:224–236. doi: 10.1002/jwmg.275. DOI

Rozylowicz L, Popescu VD, Pǎtroescu M, Chişamera G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 2011;20:561–579. doi: 10.1007/s10531-010-9967-x. DOI

Weingarth K, et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture-recapture techniques in a German national park. Anim. Biodivers. Conserv. 2012;35:197–207. doi: 10.32800/abc.2012.35.0197. DOI

Pesenti E, Zimmermann F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 2013;94:73–81. doi: 10.1644/11-MAMM-A-322.1. DOI

Blanc L, Marboutin E, Gatti S, Gimenez O. Abundance of rare and elusive species: Empirical investigation of closed versus spatially explicit capture-recapture models with lynx as a case study. J. Wildl. Manage. 2013;77:372–378. doi: 10.1002/jwmg.453. DOI

Kubala J, et al. Robust monitoring of the Eurasian lynx Lynxlynx in the Slovak Carpathians reveals lower numbers than officially reported. Oryx. 2019;53:548–556. doi: 10.1017/S003060531700076X. DOI

Kaczensky P, et al. Status, Management and Distribution of Large Carnivores: Bear, Lynx, Wolf & Wolverine—in Europe. European Commission; 2013.

Gimenez O, et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 2019;9:11707–11715. doi: 10.1002/ece3.5668. PubMed DOI PMC

Okarma, H. et al. Status of Carnivores in the Carpathian Ecoregion. Report of the Carpathian Ecoregion Initiative (2000).

Stehlík, J. Znovuvysazení rysa ostrovida Lynx lynx L. v některých evropských zemích v letech 1970–1976. Poľovnícky zborník—Folia venatoria9, 255–265 (1979).

Červený J, Bufka L. Lynx (Lynx lynx) in south-western Bohemia. Acta. Sci. Nat. Brno. 1996;30:16–33.

Salvatori, V. et al. Hunting legislation in the Carpathian Mountains: Implications for the conservation and management of large carnivores. Wildlife Biol.8, Pagination missing-please provide (2002).

Smolko, P. et al. Lynx monitoring in the Muránska planina NP, Slovakia and its importance for the national and European management and conservation of the species. Technical report (2018).

Kubala, J. et al. Monitoring rysa ostrovida (Lynx lynx) vo Veporských vrchoch a jeho význam pre národný a európsky manažment a ochranu druhu. Technická správa. (In Slovak) (2019).

Kubala, J. et al. Monitoring rysa ostrovida (Lynx lynx) v Strážovských vrchoch a jeho význam pre národný a európsky manažment a ochranu druhu. Technická správa. (In Slovak) (2020).

Duangchantrasiri S, et al. Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement. Conserv. Biol. 2016;30:639–648. doi: 10.1111/cobi.12655. PubMed DOI

Karanth KU, Nichols JD, Kumar NS, Hines JE. Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology. 2006;87:2925–2937. doi: 10.1890/0012-9658(2006)87[2925:ATPDUP]2.0.CO;2. PubMed DOI

Bisht S, Banerjee S, Qureshi Q, Jhala Y. Demography of a high-density tiger population and its implications for tiger recovery. J. Appl. Ecol. 2019;56:1725–1740. doi: 10.1111/1365-2664.13410. DOI

Zimmermann F. et al. Abundanz und Dichte des Luchses in den Nordwestalpen : Fang-Wiederfang-Schätzung mittels Fotofallen im K-VI im Winter 2015 / 16, Vol. 41 (2016).

Pironon S, et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 2017;92:1877–1909. doi: 10.1111/brv.12313. PubMed DOI

Sagarin RD, Gaines SD. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol. Lett. 2002;5:137–147. doi: 10.1046/j.1461-0248.2002.00297.x. DOI

Eckert CG, Samis KE, Lougheed SC. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 2008;17:1170–1188. doi: 10.1111/j.1365-294X.2007.03659.x. PubMed DOI

López-Bao JV, et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 2019;9:8903. doi: 10.1038/s41598-019-45569-2. PubMed DOI PMC

Krojerová-Prokešová, J. et al. Genetic constraints of population expansion of the Carpathian lynx at the western edge of its native distribution range in Central Europe. Heredity (Edinb).122, (2019). PubMed PMC

Ján, K. & Štefan, D. Mammals of Slovakia distribution, bionomy and protection. (VEDA, 2012).

Kubala J, et al. The coat pattern in the Carpathian population of Eurasian lynx has changed: a sign of demographic bottleneck and limited connectivity. Eur. J. Wildl. Res. 2019;66:2. doi: 10.1007/s10344-019-1338-7. DOI

Kutal, M. et al. Occurrence of large carnivores—Lynx lynx, Canis lupus, and Ursus arctos—and of Felis silvestris in the Czech Republic and western Slovakia in 2012–2016 (Carnivora). Lynx, new Ser.48, 93–107.

Galvánek, J., Pietorová, E. & Matejová, M. Hodnotenie abiotických zložiek vybranej ekologicko-funkčnej jednotky. in Ochrana prírody Kysuckého regiónu a spolupráca na jeho trvalo udržateľnom rozvoji. (1996).

Tolasz, R., Miková, T., Valeriánová, A. & Voženílek, V. Atlas podnebí Česka. (2007).

Bochníček, O. Climate Atlas of Slovakia. (Slovak Hydrometeorological Institute, 2015).

Czech Statistical Office. Statistical Yearbook of the Czech Republic 2017. Accessed 9 Nov 2020. https://www.czso.cz/csu/czso/statistical-yearbook-of-the-czech-republic (2017).

Statistical Office of the Slovak Republic. Statistical Yearbook of the Slovak Republic 2017. Accessed 9 Nov 2020. https://slovak.statistics.sk:443/wps/portal?urile=wcm:path:/obsah-en-pub/publikacie/vsetkypublikacie/f3dc4a81-06ac-4fea-93b7-e0ff45a9fff6 (2017).

Romportl, D., Zyka, V. & Kutal, M. Connectivity Conservation of Large Carnivores’ Habitats in the Carpathians. in 5th European Congress of Conservation Biology (2018). 10.17011/conference/eccb2018/107837.

Weingarth K, et al. Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 2015;24:2935–2952. doi: 10.1007/s10531-015-0986-5. DOI

Mohr CO. Table of equivalent populations of north american small mammals. Am. Midl. Nat. 1947;37:223–249. doi: 10.2307/2421652. DOI

Karanth KU, Nichols JD. Estimation of tiger densities in India using photographic captures and recaptures. Ecology. 1998;79:2852–2862. doi: 10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2. DOI

Okarma H, Sniezko S, Smietana W. Home ranges of Eurasian lynx Lynxlynx in the Polish Carpathian Mountains. Wildlife Biol. 2007;13:481–487. doi: 10.2981/0909-6396(2007)13[481:HROELL]2.0.CO;2. DOI

ESRI. ArcGIS Desktop. (2019).

Duľa, M., Drengubiak, P., Kutal, M., Trulík, V. & Hrdý, Ľ. Monitoring lynx in Kysuce PLA, Slovakia. (2015).

Kutal, M., Váňa, M., Bojda, M., Kutalová, L. & Suchomel, J. Camera trapping of the Eurasian lynx in the Czech-Slovakian borderland. (2015).

Duľa, M. et al. Recentný výskyt a reprodukcia rysa ostrovida (Lynx lynx) v CHKO Kysuce a NP Malá Fatra. in 75–78 (2017).

Choo YR, et al. Best practices for reporting individual identification using camera trap photographs. Glob. Ecol. Conserv. 2020;24:e01294. doi: 10.1016/j.gecco.2020.e01294. DOI

Zimmermann F, Breitenmoser-Würsten C, Molinari-Jobin A, Breitenmoser U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture-recapture. Integr. Zool. 2013;8:232–243. doi: 10.1111/1749-4877.12017. PubMed DOI

Gopalaswamy AM, et al. Program SPACECAP: Software for estimating animal density using spatially explicit capture-recapture models. Methods Ecol. Evol. 2012;3:1067–1072. doi: 10.1111/j.2041-210X.2012.00241.x. DOI

Gopalaswamy, A. et al. SPACECAP: An R package for estimating animal density using spatially explicit capture-recapture models. (2014).

Team, R. C. R software. (2020).

Stanley & Burnham_1999. A closure test for capture data.Env&EcolStats.pdf.

Stanley, T. & Richards, J. CloseTest: A program for testing capture–recapture data for closure [Software Manual]. (2004).

Copernicus Programme. CORINE Land Cover 2012. http://land.copernicus.e/an-europea/orine-land-cove/lc-2012.Google Scholar (2012).

Gelman, A., Carlin, J., Stern, H. & DB, R. Bayesian data analysis.2nd edn. (2004).

Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge Univ; 2006.

White GC, Burnham KP. Program MARK: survival estimation from populations of marked animals. Bird Study. 1999;46:S120–S139. doi: 10.1080/00063659909477239. DOI

Arnason AN. Parameter estimates from mark-recapture experiments on two populations subject to migration and death. Res. Popul. Ecol. (Kyoto) 1972;13:97–113. doi: 10.1007/BF02521971. DOI

Arnason AN. The estimation of population size, migration rates and survival in a stratified population. Res. Popul. Ecol. (Kyoto) 1973;15:1–8. doi: 10.1007/BF02510705. DOI

Chabanne DBH, Pollock KH, Finn H, Bejder L. Applying the multistate capture–recapture robust design to characterize metapopulation structure. Methods Ecol. Evol. 2017;8:1547–1557. doi: 10.1111/2041-210X.12792. DOI

Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. multimodel inference2, (2002).

Chapron G, et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science. 2014;346:1517–1519. doi: 10.1126/science.1257553. PubMed DOI

Royle J, Chandler RB, Sollmann R, Gardner B. Spatial Capture-Recapture. Academic Press; 2014.

Rovero, F. & Zimmermann, F. Introduction. in Camera Trapping for Wildlife Research 1–7. (2016).

Avgan B, Zimmermann F, Güntert M, Arikan F, Breitenmoser U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildlife Biol. 2014;20:217–221. doi: 10.2981/wlb.00025. DOI

Harmsen BJ, Foster RJ, Quigley H. Spatially explicit capture recapture density estimates: Robustness, accuracy and precision in a long-term study of jaguars (Pantheraonca) PLoS ONE. 2020;15:e0227468. doi: 10.1371/journal.pone.0227468. PubMed DOI PMC

Sollmann R, Gardner B, Belant JL. How does spatial study design influence density estimates from spatial capture-recapture models? PLoS ONE. 2012;7:e34575. doi: 10.1371/journal.pone.0034575. PubMed DOI PMC

Zimmermann, F. et al.Abondance et densité du lynx dans le Sud du Jura suisse : estimation par capture-recapture photographique dans le compartiment I , durant l ’ hiver 2014 / 15, Vol. 41 (2015).

Breitenmoser-Würsten C, et al. Spatial and Social stability of a Eurasian lynx Lynxlynx population: an assessment of 10 years of observation in the Jura Mountains. Wildlife Biol. 2007;13:365–380. doi: 10.2981/0909-6396(2007)13[365:SASSOA]2.0.CO;2. DOI

Fabiano EC, et al. Trends in cheetah Acinonyxjubatus density in north-central Namibia. Popul. Ecol. 2020;62:233–243. doi: 10.1002/1438-390X.12045. DOI

Jedrzejewski W, et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus) Ecography (Cop.) 1996;19:122–138. doi: 10.1111/j.1600-0587.1996.tb00163.x. DOI

Breitenmoser-Würsten C, Vandel J-M, Zimmermann F, Breitenmoser U. Demography of lynx Lynxlynx in the Jura Mountains. Wildlife Biol. 2007;13:381–392. doi: 10.2981/0909-6396(2007)13[381:DOLLLI]2.0.CO;2. DOI

Andren H, et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 2006;131:23–32. doi: 10.1016/j.biocon.2006.01.025. DOI

Herrero A, et al. Genetic analysis indicates spatial-dependent patterns of sex-biased dispersal in Eurasian lynx in Finland. PLoS ONE. 2021;16:e0246833. doi: 10.1371/journal.pone.0246833. PubMed DOI PMC

Port M, et al. Rise and fall of a Eurasian lynx (Lynx lynx) stepping-stone population in central Germany. Mammal Res. 2021;66:45–55. doi: 10.1007/s13364-020-00527-6. DOI

Pereira JA, et al. Population density of Geoffroy’s cat in scrublands of central Argentina. J. Zool. 2011;283:37–44. doi: 10.1111/j.1469-7998.2010.00746.x. DOI

Breitenmoser U, et al. Conservation of the lynx Lynxlynx in the Swiss Jura Mountains. Wildlife Biol. 2007;13:340–355. doi: 10.2981/0909-6396(2007)13[340:COTLLL]2.0.CO;2. DOI

Basille M, et al. What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people? Ecography (Cop.) 2009;32:683–691. doi: 10.1111/j.1600-0587.2009.05712.x. DOI

Filla M, et al. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night. Ecol. Evol. 2017;7:6367–6381. doi: 10.1002/ece3.3204. PubMed DOI PMC

Nowicki, P. Food habit and diet of the lynx (Lynx lynx) in Europe. J. Wildl. Res.2, (1997).

Statistical Office of the Slovak Republic. Spring stock and hunting of game. Accessed 9 Nov 2020. http://datacube.statistics.sk/#!/view/en/VBD_SLOVSTAT/pl2006rs/v_pl2006rs_00_00_00_en (2019).

Czech Statistical Office. Number and hunting of selected game species 2010 - 2019. Accessed 9 Nov 2020. https://www.czso.cz/documents/10180/122461942/1000052006e.pdf/3cd18662-1691-45df-a398-040ecdeeef00?version=1.1 (2020).

Kutal M, Váňa M, Suchomel J, Chapron G, Lopez-Bao J. Trans-boundary edge effects in the western carpathians: the influence of hunting on large carnivore occupancy. PLoS ONE. 2016;11:e0168292. doi: 10.1371/journal.pone.0168292. PubMed DOI PMC

Schmidt-Posthaus H, Breitenmoser-Würsten C, Posthaus H, Bacciarini L, Breitenmoser U. Causes of mortality in reintroduced Eurasian lynx in Switzerland. J. Wildl. Dis. 2002;38:84–92. doi: 10.7589/0090-3558-38.1.84. PubMed DOI

Mattisson J, et al. Lethal male-male interactions in Eurasian lynx. Mamm. Biol. 2013;78:304–308. doi: 10.1016/j.mambio.2012.11.006. DOI

Sindičić M, et al. Mortality in the Eurasian lynx population in Croatia over the course of 40 years. Mamm. Biol. 2016;81:290–294. doi: 10.1016/j.mambio.2016.02.002. DOI

Heurich M, et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 2018;224:355–365. doi: 10.1016/j.biocon.2018.05.011. DOI

Červený J, Krojerová-Prokešová J, Kušta T, Koubek P. The change in the attitudes of Czech hunters towards Eurasian lynx: Is poaching restricting lynx population growth? J. Nat. Conserv. 2019;47:28–37. doi: 10.1016/j.jnc.2018.11.002. DOI

Kalaš, M. Contribution on the collisions of the European Lynx (Lynx lynx) with car traffic. in Migration corridors in the Western Carpathians: Malá Fatra—Kysucké Beskydy—Moravskoslezské Beskydy—Javorníky (ed. Kutal, M.) (2013).

Boitani, L. et al. Key actions for Large Carnivore populations in Europe. Report to DG Environment. Contract no. 07.0307/2013/654446/SER/B3 (European Commission, Bruxelles, 2015).

Kratochvil J, et al. History of the distribution of the lynx in Europe. Acta Sci. Nat. Brno. 1968;4:1–50.

Zimmermann F, BreitenmoserWursten C, Breitenmoser U. Natal dispersal of Eurasian lynx (Lynx lynx) in Switzerland. J. Zool. 2005;267:381–395. doi: 10.1017/S0952836905007545. DOI

Zimmermann F, Breitenmoser-Würsten C, Breitenmoser U. Importance of dispersal for the expansion of a Eurasian lynx Lynxlynx population in a fragmented landscape. Oryx. 2007;41:358–368. doi: 10.1017/S0030605307000712. DOI

Kowalczyk, R., Górny, M. & Schmidt, K. Edge effect and influence of economic growth on Eurasian lynx mortality in the Białowieża Primeval Forest, Poland. 3–8. 10.1007/s13364-014-0203-z (2015).

Černecký, J. et al. Správa o stave biotopov a druhov európskeho významu za obdobie rokov 2013–2018 v Slovenskej republike. (2020).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...