Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34615965
PubMed Central
PMC8494906
DOI
10.1038/s41598-021-99337-2
PII: 10.1038/s41598-021-99337-2
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- hustota populace MeSH
- lidé MeSH
- Lynx * MeSH
- populační dynamika * MeSH
- prostorová analýza MeSH
- rozmnožování MeSH
- rozšíření zvířat MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Large carnivores promote crucial ecosystem processes but are increasingly threatened by human persecution and habitat destruction. Successful conservation of this guild requires information on long-term population dynamics obtained through demographic surveys. We used camera traps to monitor Eurasian lynx between 2009 and 2018 in a strictly protected area in the Bohemian Forest Ecosystem, located in the core of the distribution of the Bohemian-Bavarian-Austrian lynx population. Thereby, we estimated sex-specific demographic parameters using spatial capture-recapture (SCR) models. Over 48,677 trap nights, we detected 65 unique lynx individuals. Density increased from 0.69 to 1.33 and from 1.09 to 2.35 individuals/100 km2 for open and closed population SCR models, respectively, with corresponding positive population growth rates (mean = 1.06). Estimated yearly sex-specific survival probabilities for the entire monitoring period were high (females 82%, males 90%) and per capita recruitment rate was low (females 12%, males 9%), indicating a low yearly population turnover. We ascertained an average number of recruits of 1.97 and a generation time of 2.64 years when considering resident reproducing females. We confirmed that reproduction in the study area took place successfully every year. Despite the overall increase in local lynx densities, the number of detected family groups remained constant throughout the study period. These results indicated that the strictly protected study area acts as a source for the multi-use landscapes in its surroundings. In this first open population SCR study on lynx, we provide sex-specific demographic parameters that are fundamental information for lynx management in the study area as well as in similar contexts Europe-wide.
Zobrazit více v PubMed
Ripple WJ, et al. Status and ecological effects of the world’s largest carnivores. Science. 2014;343:1241484–1241484. doi: 10.1126/science.1241484. PubMed DOI
Treves A, Karanth KU. Human–carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 2003;17:1491–1499. doi: 10.1111/j.1523-1739.2003.00059.x. DOI
Linnell JDC, Boitani L. Building biological realism into wolf management policy: The development of the population approach in Europe. Hystrix Ital. J. Mammal. 2011;23:80–91.
Heurich M, et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 2018;224:355–365. doi: 10.1016/j.biocon.2018.05.011. DOI
Breitenmoser-Würsten C, Vandel J-M, Zimmermann F, Breitenmoser U. Demography of lynx Lynx lynx in the Jura Mountains. Wildl. Biol. 2007;13:381–392. doi: 10.2981/0909-6396(2007)13[381:DOLLLI]2.0.CO;2. DOI
Clutton-Brock T, Sheldon BC. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 2010;25:562–573. doi: 10.1016/j.tree.2010.08.002. PubMed DOI
O’Connell, A., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses. (Springer Tokyo, 2011).
Noss AJ, et al. A Camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in Bolivian Dry Forests. Tapir Cons. 2003;12:9.
Karanth KU, Nichols JD. Estimation of tiger densities in India using photographic captures and recaptures. Ecology. 1998;79:11. doi: 10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2. DOI
Satter CB, Augustine BC, Harmsen BJ, Fostern RJ, Kelly MJ. Sex‐specific population dynamics of ocelots in Belize using open population spatial capture–recapture. Ecosphere. 2019;10:e02792. doi: 10.1002/ecs2.2792. DOI
Silver SC, et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx. 2004;38:148–154. doi: 10.1017/S0030605304000286. DOI
Zimmermann F, Breitenmoser-Würsten C, Molinari-Jobin A, Breitenmoser U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 2013;8:232–243. doi: 10.1111/1749-4877.12017. PubMed DOI
Royle JA, Chandler RB, Sollmann R, Gardner B. Spatial Capture–Recapture. Elsevier; 2014.
Chandler RB, Clark JD. Spatially explicit integrated population models. Methods Ecol. Evol. 2014;5:1351–1360. doi: 10.1111/2041-210X.12153. DOI
Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe (EuropeanCommission, 2013).
Magg N, et al. Habitat availability is not limiting the distribution of the Bohemian–Bavarian lynx Lynx lynx population. Oryx. 2016;50:742–752. doi: 10.1017/S0030605315000411. DOI
Müller J, et al. Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biol. Conserv. 2014;177:210–217. doi: 10.1016/j.biocon.2014.07.007. DOI
Bull JK, et al. The effect of reintroductions on the genetic variability in Eurasian lynx populations: The cases of Bohemian–Bavarian and Vosges–Palatinian populations. Conserv. Genet. 2016;17:1229–1234. doi: 10.1007/s10592-016-0839-0. DOI
Walston J, et al. Bringing the tiger back from the brink—The six percent solution. PLoS Biol. 2010;8:e1000485. doi: 10.1371/journal.pbio.1000485. PubMed DOI PMC
Schmidt K, Jędrzejewski W, Okarma H. Spatial organization and social relations in the Eurasian lynx population in Bialowieza Primeval Forest, Poland. Acta Theriol. (Warsz.) 1997;42:289–312. doi: 10.4098/AT.arch.97-30. DOI
Bunnefeld N, Linnell JDC, Odden J, van Duijn MAJ, Andersen R. Risk taking by Eurasian lynx (Lynx lynx) in a human-dominated landscape: Effects of sex and reproductive status. J. Zool. 2006;270:31–39.
Gaillard J-M, Nilsen EB, Odden J, Andrén H, Linnell JDC. One size fits all: Eurasian lynx females share a common optimal litter size. J. Anim. Ecol. 2014;83:107–115. doi: 10.1111/1365-2656.12110. PubMed DOI
Nilsen EB, Linnell JDC, Odden J, Samelius G, Andrén H. Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx) Acta Theriol. (Warsz.) 2012;57:217–223. doi: 10.1007/s13364-011-0066-5. PubMed DOI PMC
O’Brien TG, Kinnaird MF, Wibisono HT. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003;6:131–139. doi: 10.1017/S1367943003003172. DOI
Cailleret M, Heurich M, Bugmann H. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 2014;328:179–192. doi: 10.1016/j.foreco.2014.05.030. DOI
Heurich M, et al. Country, cover or protection: What shapes the distribution of red deer and roe deer in the Bohemian Forest Ecosystem? PLoS ONE. 2015;10:e0120960. doi: 10.1371/journal.pone.0120960. PubMed DOI PMC
van Beeck Calkoen STS, et al. The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. For. Ecol. Manag. 2019;451:117483. doi: 10.1016/j.foreco.2019.117483. DOI
Wölfl M, Bufka L, Červený J, et al. Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriol. 2001;46:181–194. doi: 10.4098/AT.arch.01-20. DOI
Mináriková, T. et al. Lynx monitoring report for Bohemian–Bavarian–Austrian lynx population for lynx year 2017 (INTERREG Central Europe, 2019).
Weingarth K, et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture–recapture techniques in a German national park. Anim. Biodivers. Conserv. 2012;35:197–207. doi: 10.32800/abc.2012.35.0197. DOI
Belotti E, et al. Patterns of lynx predation at the interface between protected areas and multi-use landscapes in Central Europe. PLoS ONE. 2015;10:e0138139. doi: 10.1371/journal.pone.0138139. PubMed DOI PMC
Tobler MW, Powell GVN. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 2013;159:109–118. doi: 10.1016/j.biocon.2012.12.009. DOI
Zimmermann F, Breitenmoser-Würsten C, Breitenmoser U. Natal dispersal of Eurasian lynx ( Lynx lynx ) in Switzerland. J. Zool. 2005;267:381. doi: 10.1017/S0952836905007545. DOI
Andrén H, et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 2006;131:23–32. doi: 10.1016/j.biocon.2006.01.025. DOI
Gimenez O, et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 2019;9:11707–11715. doi: 10.1002/ece3.5668. PubMed DOI PMC
Pesenti E, Zimmermann F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 2013;94:73–81. doi: 10.1644/11-MAMM-A-322.1. DOI
Weingarth K, et al. Hide and seek: Extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 2015;24:2935–2952. doi: 10.1007/s10531-015-0986-5. DOI
Pollock KH. A capture–recapture design robust to unequal probability of capture. J. Wildl. Manag. 1982;46:752. doi: 10.2307/3808568. DOI
Augustine, B. benaug/OpenPopSCR. (2019). https://github.com/benaug/OpenPopSCR.
Ergon T, Gardner B. Separating mortality and emigration: Modelling space use, dispersal and survival with robust-design spatial capture–recapture data. Methods Ecol. Evol. 2014;5:1327–1336. doi: 10.1111/2041-210X.12133. DOI
Schaub M, Royle JA. Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol. Evol. 2014;5:1316–1326. doi: 10.1111/2041-210X.12134. DOI
Plummer M, Best N, Cowles K, Vines K. CODA: Convergence diagnosis and output analysis for MCMC. R News. 2014;6:7–11.
Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998;7:434–455.
Efford, M. secr 4.1—Spatially explicit capture–recapture in R. (2019). https://cran.microsoft.com/snapshot/2019-12-24/web/packages/secr/vignettes/secr-overview.pdf. PubMed
Burnham KP, Overton WS. Robust estimation of population size when capture probabilities vary among animals. Ecology. 1979;60:927–936. doi: 10.2307/1936861. DOI
Burnham KP, Anderson DR, Burnham KP. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach. Springer; 2002.
O’Brien TG. Abundance, density and relative abundance: A conceptual framework. In: O’Connell AF, Nichols JD, Karanth KU, editors. Camera Traps in Animal Ecology. Springer Japan; 2011. pp. 71–96.
Rovero F, Zimmermann F. Camera Trapping for Wildlife Research. Pelagic Publishing Ltd; 2016.
Augustine BC, et al. Sex-specific population dynamics and demography of capercaillie (Tetrao urogallus L.) in a patchy environment. Popul. Ecol. 2020;62:80–90. doi: 10.1002/1438-390X.12031. DOI
Duľa M, et al. Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range. Sci. Rep. 2021;11:9236. doi: 10.1038/s41598-021-88348-8. PubMed DOI PMC
Avgan B, Zimmermann F, Güntert M, Arıkan F, Breitenmoser U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildl. Biol. 2014;20:217–221. doi: 10.2981/wlb.00025. DOI
Mengüllüoğlu D, Ambarlı H, Berger A, Hofer H. Foraging ecology of Eurasian lynx populations in southwest Asia: Conservation implications for a diet specialist. Ecol. Evol. 2018;8:9451–9463. doi: 10.1002/ece3.4439. PubMed DOI PMC
Heurich M, et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE. 2014;9:e114143. doi: 10.1371/journal.pone.0114143. PubMed DOI PMC
Jedrzejewski W, et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus) Ecography. 1996;19:122–138. doi: 10.1111/j.1600-0587.1996.tb00163.x. DOI
Gardner B, Sollmann R, Kumar NS, Jathanna D, Karanth KU. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 2018;8:10336–10344. doi: 10.1002/ece3.4509. PubMed DOI PMC
López-Bao JV, et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 2019;9:8903. doi: 10.1038/s41598-019-45569-2. PubMed DOI PMC
Engleder T, et al. First breeding record of a 1-year-old female Eurasian lynx. Eur. J. Wildl. Res. 2019;65:17. doi: 10.1007/s10344-019-1256-8. DOI
Heurich M, et al. Selective predation of a stalking predator on ungulate prey. PLoS ONE. 2016;11:e0158449. doi: 10.1371/journal.pone.0158449. PubMed DOI PMC
Andrén H, Liberg O. Large impact of Eurasian lynx predation on roe deer population dynamics. PLoS ONE. 2015;10:e0120570. doi: 10.1371/journal.pone.0120570. PubMed DOI PMC
Elmhagen B, Rushton SP. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up? Ecol. Lett. 2007;10:197–206. doi: 10.1111/j.1461-0248.2006.01010.x. PubMed DOI
Wikenros C, et al. Fear or food—Abundance of red fox in relation to occurrence of lynx and wolf. Sci. Rep. 2017;7:9059. doi: 10.1038/s41598-017-08927-6. PubMed DOI PMC
Helldin JO, Liberg O, Glöersen G. Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden? Frequency and population effects. J. Zool. 2006;270:657–663. doi: 10.1111/j.1469-7998.2006.00172.x. DOI
Sollmann R, Mohamed A, Samejima H, Wilting A. Risky business or simple solution—Relative abundance indices from camera-trapping. Biol. Conserv. 2013;159:405–412. doi: 10.1016/j.biocon.2012.12.025. DOI
Linnell JDC, Kaczensky P, Wotschikowsky U, Lescureux N, Boitani L. Framing the relationship between people and nature in the context of European conservation: Relationship between people and nature. Conserv. Biol. 2015;29:978–985. doi: 10.1111/cobi.12534. PubMed DOI