Identification of Real-Life Mixtures Using Human Biomonitoring Data: A Proof of Concept Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
733032
European Union's Horizon 2020 research and innovation program
Spanish Ministry of Agriculture, Food and Environment
Spanish Ministry of Agriculture, Food and Environment
SEG 1251/07; SEG 1210/10
Instituto de Salud Carlos III (ISCIII)
German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection
German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection
NIRAS/ONDRAF (Belgian National Agency for Radioactive Waste and enriched Fissile Material
NIRAS/ONDRAF (Belgian National Agency for Radioactive Waste and enriched Fissile Material
STORA (Study and Consultation Radioactive Waste Dessel)
STORA (Study and Consultation Radioactive Waste Dessel)
MONA (Mols Overleg Nucleair Afval)
MONA (Mols Overleg Nucleair Afval)
No LM2018121
Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/17_043/0009632
OP RDE-project CETOCOEN EXCELLENCE
CZ.02.1.01/0.0/0.0/15_003/0000469
CETOCOEN PLUS project
857560
European Union's Horizon 2020 research and innovation program
PubMed
36976969
PubMed Central
PMC10058482
DOI
10.3390/toxics11030204
PII: toxics11030204
Knihovny.cz E-zdroje
- Klíčová slova
- HBM4EU, chemical mixtures, clustering, combined exposure, human biomonitoring, mixture risk assessment, network analysis,
- Publikační typ
- časopisecké články MeSH
Human health risk assessment of chemical mixtures is complex due to the almost infinite number of possible combinations of chemicals to which people are exposed to on a daily basis. Human biomonitoring (HBM) approaches can provide inter alia information on the chemicals that are in our body at one point in time. Network analysis applied to such data may provide insight into real-life mixtures by visualizing chemical exposure patterns. The identification of groups of more densely correlated biomarkers, so-called "communities", within these networks highlights which combination of substances should be considered in terms of real-life mixtures to which a population is exposed. We applied network analyses to HBM datasets from Belgium, Czech Republic, Germany, and Spain, with the aim to explore its added value for exposure and risk assessment. The datasets varied in study population, study design, and chemicals analysed. Sensitivity analysis was performed to address the influence of different approaches to standardise for creatinine content of urine. Our approach demonstrates that network analysis applied to HBM data of highly varying origin provides useful information with regards to the existence of groups of biomarkers that are densely correlated. This information is relevant for regulatory risk assessment, as well as for the design of relevant mixture exposure experiments.
German Environment Agency 14195 Berlin Germany
Health Flemish Institute for Technological Research 2400 Mol Belgium
Institute for Risk Assessment Sciences Utrecht University 3584 CM Utrecht The Netherlands
National Centre for Environmental Health Instituto de Salud Carlos 3 28220 Majadahonda Spain
RECETOX Faculty of Science Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
EFSA Scientific Committee. More S.J., Bampidis V., Benford D., Bragard C., Hernandez-Jerez A., Bennekou S.H., Halldorsson T.I., Koutsoumanis K.P., Lambré C., et al. Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J. 2021;19:e07033. doi: 10.2903/j.efsa.2021.e190101. PubMed DOI PMC
Drakvik E., Altenburger R., Aoki Y., Backhaus T., Bahadori T., Barouki R., Brack W., Cronin M.T., Demeneix B., Bennekou S.H., et al. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 2020;134:105267. doi: 10.1016/j.envint.2019.105267. PubMed DOI PMC
European Commission Communication from the Commission to the Council: The Combination Effects of Chemicals—Chemical mixtures. 2012, COM(2012) 252 final, 1–10. [(accessed on 27 January 2023)]. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0252:FIN:EN:PDF.
Kienzler A., Bopp S.K., van der Linden S., Berggren E., Worth A. Regulatory assessment of chemical mixtures: Requirements, current approaches and future perspectives. Regul. Toxicol. Pharmacol. 2016;80:321–334. doi: 10.1016/j.yrtph.2016.05.020. PubMed DOI
Rotter S., Beronius A., Boobis A.R., Hanberg A., Van Klaveren J., Luijten M., Machera K., Nikolopoulou D., Van Der Voet H., Zilliacus J., et al. Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: The potential EuroMix contribution. Crit. Rev. Toxicol. 2018;48:796–814. doi: 10.1080/10408444.2018.1541964. PubMed DOI
Agier L., Portengen L., Chadeau-Hyam M., Basagaña X., Giorgis-Allemand L., Siroux V., Robinson O., Vlaanderen J., González J.R., Nieuwenhuijsen M.J., et al. A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations. Environ. Health Perspect. 2016;124:1848–1856. doi: 10.1289/EHP172. PubMed DOI PMC
Barrera-Gómez J., Agier L., Portengen L., Chadeau-Hyam M., Giorgis-Allemand L., Siroux V., Robinson O., Vlaanderen J., González J.R., Nieuwenhuijsen M., et al. A systematic comparison of statistical methods to detect interactions in exposome-health associations. Environ. Health. 2017;16:74. doi: 10.1186/s12940-017-0277-6. PubMed DOI PMC
Ottenbros I., Govarts E., Lebret E., Vermeulen R., Schoeters G., Vlaanderen J. Network Analysis to Identify Communities Among Multiple Exposure Biomarkers Measured at Birth in Three Flemish General Population Samples. Front. Public Health. 2021;9:590038. doi: 10.3389/fpubh.2021.590038. PubMed DOI PMC
Lubin J.H., Colt J.S., Camann D., Davis S., Cerhan J., Severson R.K., Bernstein L., Hartge P. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environ. Health Perspect. 2004;112:1691–1696. doi: 10.1289/ehp.7199. PubMed DOI PMC
van Buuren S., Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software. 2011;45:1–67. doi: 10.18637/jss.v045.i03. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2022. [(accessed on 27 January 2023)]. Available online: https://www.R-project.org/
Govarts E., Portengen L., Lambrechts N., Bruckers L., Hond E.D., Covaci A., Nelen V., Nawrot T.S., Loots I., Sioen I., et al. Early-life exposure to multiple persistent organic pollutants and metals and birth weight: Pooled analysis in four Flemish birth cohorts. Environ. Int. 2020;145:106149. doi: 10.1016/j.envint.2020.106149. PubMed DOI
Řiháčková K., Pindur A., Komprdová K., Pálešová N., Kohoutek J., Šenk P., Navrátilová J., Andrýsková L., Šebejová L., Hůlek R., et al. The exposure of Czech firefighters to perfluoroalkyl substances and polycyclic aromatic hydrocarbons: CELSPAC—FIREexpo case-control human biomonitoring study. Under Review PubMed PMC
Mauz E., Gößwald A., Kamtsiuris P., Hoffmann R., Lange M., von Schenck U., Allen J., Butschalowsky H., Frank L., Hölling H., et al. New data for action. Data collection for KiGGS Wave 2 has been completed. J. Health Monit. 2017;2 doi: 10.17886/RKI-GBE-2017-105. PubMed DOI PMC
Schulz C., Kolossa-Gehring M., Gies A. German Environmental Survey for Children and Adolescents 2014-2017 (GerES V)—the environmental module of KiGGS Wave 2. J. Health Monit. 2017;2 doi: 10.17886/rki-gbe-2017-108. PubMed DOI PMC
Murawski A., Roth A., Schwedler G., Schmied-Tobies M.I., Rucic E., Pluym N., Scherer M., Scherer G., Conrad A., Kolossa-Gehring M. Polycyclic aromatic hydrocarbons (PAH) in urine of children and adolescents in Germany—human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V) Int. J. Hyg. Environ. Health. 2020;226:113491. doi: 10.1016/j.ijheh.2020.113491. PubMed DOI
Hoffmann R., Lange M., Butschalowsky H., Houben R., Schmich P., Allen J., Kuhnert R., Schaffrath Rosario A., Gößwald A. KiGGS Wave 2 cross-sectional study—participant acquisition, response rates and representativeness. J. Health Monit. 2018;3:78–91. doi: 10.17886/RKI-GBE-2018-032. PubMed DOI PMC
Pérez-Gómez B., Bioambient.Es O.B.O., Pastor-Barriuso R., Cervantes-Amat M., Esteban M., Ruiz-Moraga M., Aragonés N., Pollán M., Navarro C., Calvo E., et al. BIOAMBIENT.ES study protocol: Rationale and design of a cross-sectional human biomonitoring survey in Spain. Environ. Sci. Pollut. Res. 2013;20:1193–1202. doi: 10.1007/s11356-012-1320-3. PubMed DOI
Csárdi G., Nepusz T. The igraph software package for complex network research. InterJ. Complex Syst. 2006;1695:1–9.
Zhao T., Liu H., Roeder K., Lafferty J., Wasserman L. The huge Package for High-dimensional Undirected Graph Estimation in R. J. Mach. Learn. Res. 2012;13:1059–1062. PubMed PMC
Golino H., Christensen A.P. EGAnet: Exploratory Graph Analysis – A Framework for Estimating the Number of Dimensions in Multivariate Data Using Network Psychometrics, R Package Version 1.1.1. 2022. [(accessed on 27 January 2023)]. Available online: https://cran.r-project.org/web/packages/EGAnet/EGAnet.pdf.
Christensen A.P., Golino H. Estimating the Stability of Psychological Dimensions via Bootstrap Exploratory Graph Analysis: A Monte Carlo Simulation and Tutorial. Psych. 2021;3:479–500. doi: 10.3390/psych3030032. DOI
Golino H., Moulder R., Shi D., Christensen A.P., Garrido L.E., Nieto M.D., Nesselroade J., Sadana R., Thiyagarajan J.A., Boker S.M. Entropy Fit Indices: New Fit Measures for Assessing the Structure and Dimensionality of Multiple Latent Variables. Multivar. Behav. Res. 2020;56:874–902. doi: 10.1080/00273171.2020.1779642. PubMed DOI
Friedman J., Hastie T., Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2007;9:432–441. doi: 10.1093/biostatistics/kxm045. PubMed DOI PMC
Liu H., Roeder K., Wasserman L. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Adv. Neural Inf. Process. Syst. 2010;24:1432–1440. PubMed PMC
Orman G.K., Labatut V. A Comparison of Community Detection Algorithms on Artificial Networks. Springer; Berlin/Heidelberg, Germany: 2009. pp. 242–256.
Pons P., Latapy M. International Symposium on Computer and Information Sciences. Springer; Heidelberg, Germany: 2005. Computing Communities in Large Networks Using Random Walks; pp. 284–293.
Rísová V. The pathway of lead through the mother’s body to the child. Interdiscip. Toxicol. 2019;12:1–6. doi: 10.2478/intox-2019-0001. PubMed DOI PMC
Vahter M. Health Effects of Early Life Exposure to Arsenic. Basic Clin. Pharmacol. Toxicol. 2008;102:204–211. doi: 10.1111/j.1742-7843.2007.00168.x. PubMed DOI
Benjamin S., Masai E., Kamimura N., Takahashi K., Anderson R.C., Faisal P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 2017;340:360–383. doi: 10.1016/j.jhazmat.2017.06.036. PubMed DOI
Schettler T. Human exposure to phthalates via consumer products. Int. J. Androl. 2006;29:134–139. doi: 10.1111/j.1365-2605.2005.00567.x. PubMed DOI
Fisher M., Arbuckle T.E., MacPherson S., Braun J.M., Feeley M., Gaudreau E. Phthalate and BPA Exposure in Women and Newborns through Personal Care Product Use and Food Packaging. Environ. Sci. Technol. 2019;53:10813–10826. doi: 10.1021/acs.est.9b02372. PubMed DOI
Andra S.S., Makris K.C. Incorporating potable water sources and use habits into surveys that improve surrogate exposure estimates for water contaminants: The case of bisphenol A. J. Water Health. 2013;12:81–93. doi: 10.2166/wh.2013.068. PubMed DOI
Llop S., Ballester F., Estarlich M., Ibarluzea J., Manrique A., Rebagliato M., Esplugues A., Iniguez C. Urinary 1-hydroxypyrene, air pollution exposure and associated life style factors in pregnant women. Sci. Total. Environ. 2008;407:97–104. doi: 10.1016/j.scitotenv.2008.07.070. PubMed DOI
Horvath S. Weighted Network Analysis: Applications in Genomics and Systems Biology. Springer New York; New York, NY, USA: 2011. p. 421.
Bodinier B., Filippi S., Haugdahl Nost T., Chiquet J., Chadeau-Hyam M. Automated calibration for stability selection in penalised regression and graphical models: A multi-OMICs network application exploring the molecular response to tobacco smoking. arXiv. 2021 doi: 10.48550/ARXIV.2106.02521. DOI
European Commission Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) 2016.
O’Brien K., Upson K., Cook N.R., Weinberg C. Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment. Environ. Health Perspect. 2016;124:220–227. doi: 10.1289/ehp.1509693. PubMed DOI PMC