The exposure of Czech firefighters to perfluoroalkyl substances and polycyclic aromatic hydrocarbons: CELSPAC - FIREexpo case-control human biomonitoring study
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37054786
PubMed Central
PMC10230324
DOI
10.1016/j.scitotenv.2023.163298
PII: S0048-9697(23)01917-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cohort profile, Firefighters, HBM value, Human biomonitoring, Perfluoroalkyl substances, Polycyclic aromatic hydrocarbons,
- MeSH
- biologický monitoring MeSH
- fluorokarbony * analýza MeSH
- hasiči * MeSH
- látky znečišťující vzduch v pracovním prostředí * analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- polycyklické aromatické uhlovodíky * analýza MeSH
- pracovní expozice * analýza MeSH
- studie případů a kontrol MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- fluorokarbony * MeSH
- látky znečišťující vzduch v pracovním prostředí * MeSH
- polycyklické aromatické uhlovodíky * MeSH
The CELSPAC - FIREexpo biomonitoring study investigates the long-term effects of chemical exposure on firefighters' wellness and fitness. It aims to provide science-based measures to minimize the health risks of the firefighting occupation. Here, we present the study design, cohort profile, and first results with respect to internal per- and polyfluoroalkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) levels in study participants. Participants (n = 166) were divided into three subcohorts: i) newly recruited firefighters, ii) professional firefighters with several years' experience, and iii) the control group. Participants underwent physical performance tests, provided information on their lifestyle and diet, and urine and blood samples 1-4 times within an 11-week period. 12 serum PFAS and 10 urinary hydroxylated PAH (OH-PAH) levels were determined using HPLC-MS/MS and compared between subcohorts and samplings. The association of internal exposure with reported lifestyles and occupational factors was investigated using Spearman's correlation, principal component analysis, and multivariate regression analysis. ΣPFAS levels in firefighters were significantly higher than in the control group and were mostly associated with the length of firefighting career, age, blood donation, and population size. 10.9 % and 7.6 % of measurements exceeded the HBM-I or HBM-II value for PFOS and PFOA, respectively. Urinary ΣPAH levels increased significantly after training with burning wooden pallets, but none of them exceeded the no observed genotoxic effect level. Firefighters' occupational exposure, its sources, and pathways, need to be systematically monitored and investigated on a long-term and individual basis. The CELSPAC - FIREexpo study helps to clarify the degree of occupational exposure to the given compounds and the subsequent risks to firefighters.
Zobrazit více v PubMed
Anderson D., Dhawan A., Laubenthal J. Methods Mol Biol. Vol. 1044. Humana Press Inc.; 2013. The comet assay in human biomonitoring; pp. 347–362. cited 2022 Sep 13. Available from: https://link.springer.com/protocol/10.1007/978-1-62703-529-3_18. PubMed
Aylward L.L., Hays S.M., Smolders R., et al. Sources of variability in biomarker concentrations. 17(1) Taylor & Francis; 2014. pp. 45–61. Jan 2 [cited 2022 Aug 27] Available from: https://www.tandfonline.com/doi/abs/10.1080/10937404.2013.864250. PubMed
Banks L.D., Harris K.L., Mantey J.A., Hood D.B., Archibong A.E., Ramesh A. In: Biomarkers Toxicol. Gupta R.C., editor. Elsevier; 2014. Polycyclic aromatic hydrocarbons.
Banks A.P.W., Thai P., Engelsman M., Wang X., Osorio A.F., Mueller J.F. Int J Hyg Environ Health. Vol. 231. Urban & Fischer; 2021. Characterising the exposure of australian firefighters to polycyclic aromatic hydrocarbons generated in simulated compartment fires. Jan 1. PubMed
Boogaard P.J. 4(SUPPL.1) Taylor & Francis Group; 2007. Determination of exposure to bitumen and fume from bitumen in the oil industry through determination of urinary 1-hydroxypyrene; pp. 111–117. cited 2022 Aug 28. Available from: https://www.tandfonline.com/doi/abs/10.1080/15459620701328964.
Brzeźnicki S., Jakubowski M., Czerski B. Int Arch Occup Environ Heal. Vol. 704. Springer; 1997. Elimination of 1-hydroxypyrene after human volunteer exposure to polycyclic aromatic hydrocarbons; pp. 257–260. 1997 Oct [cited 2022 Sep 12];70(4) Available from: https://link.springer.com/article/10.1007/s004200050216. PubMed
Calafat A.M. Curr Epidemiol Reports. 3(2) NIH Public Access; 2016. Contemporary issues in exposure assessment using biomonitoring; p. 145. Nov 17 [cited 2022 Jan 7] Available from: https://pubs.rsc.org/en/content/articlehtml/2021/em/d1em00228g. PubMed PMC
Cao Y., Ng C. Environ Sci Process Impacts. 23(11) The Royal Society of Chemistry; 2021. Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review; pp. 1623–1640. Nov 17 [cited 2022 Jan 7] Available from: https://pubs.rsc.org/en/content/articlehtml/2021/em/d1em00228g. PubMed
CDC's National Center for Environmental Health (NCEH) Laboratory Procedure Manual. Analyte:Polyfluoroalkyl chemicals: Perfluorooctane sulfonamide, 2-(Nmethyl-perfluorooctane sulfonamido) acetate, 2-(N-ethylperfluorooctane sulfonamido) acetate, perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooc [Internet] 2013. https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/pfc_g_met.pd Available from.
CDC's National Center for Environmental Health (NCEH) Laboratory procedure manual. Analyte: Eight monohydroxy-polycyclic aromatic hydrocarbons: 1-hydroxynaphthalene, 2- hydroxynaphthalene, 2-hydroxyfluorene, 3- hydroxyfluorene, 1-hydroxyphenanthrene, 2- & 3-hydroxyphenanthrene, 1-hydroxypyrene. Matrix: Urine. https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/labmethods/PAH_H_MET_Aromatic_Hydrocarbons.pdf [Internet]. Available from.
Czech Statistical Office . 2019. Population of Municipalities 1 January 2019. Prague.
Dereziński P., Klupczyńska A., Sawicki W., Kokot Z.J. Acta Pol Pharm - Drug Res. 73(2) 2016. Creatinine determination in urine by liquid chromatography-electrospray ionization-tandem mass spectrometry method; pp. 303–313. cited 2022 Apr 1. Available from: https://pubmed.ncbi.nlm.nih.gov/27180423/ PubMed
Dobraca D., Israel L., McNeel S., et al. J Occup Environ Med. 57(1) Wolters Kluwer Health; 2015. Biomonitoring in California firefighters: metals and perfluorinated chemicals; p. 88. Jan 21 [cited 2023 Feb 21] Available from: /pmc/articles/PMC4274322/ PubMed PMC
EEA-JRC . 2013. Environment And Human Health, Joint EEA-JRC Report. European Environment Agency Report No 5/2013. Copenhagen.
Fent K.W., Toennis C., Sammons D., et al. Int J Hyg Environ Health. 222(7) Urban & Fischer; 2019. Firefighters' and instructors' absorption of PAHs and benzene during training exercises; pp. 991–1000. Aug 1. PubMed PMC
Ganzleben C., Antignac J.P., Barouki R., et al. Int J Hyg Environ Health. 220(2) Urban & Fischer; 2017. Human biomonitoring as a tool to support chemicals regulation in the European Union; pp. 94–97. Mar 1. PubMed
Gianniou N., Katsaounou P., Dima E., et al. Respir Med. Vol. 118. W.B. Saunders; 2016. Prolonged occupational exposure leads to allergic airway sensitization and chronic airway and systemic inflammation in professional firefighters; pp. 7–14. Sep 1. PubMed
Goodrich J.M., Calkins M.M., Caban-Martinez A.J., et al. Epigenomics. 13(20) Future Medicine Ltd.; 2021. Per- And polyfluoroalkyl substances, epigenetic age and DNA methylation: a cross-sectional study of firefighters; pp. 1619–1636. Oct 1 [cited 2023 Mar 10] Available from: /pmc/articles/PMC8549684/ PubMed PMC
Graber J.M., Black T.M., Shah N.N., et al. Int J Environ Res Public Health. 18(7) MDPI AG; 2021. Prevalence and predictors of per-and polyfluoroalkyl substances (PFAS) serum levels among members of a suburban us volunteer fire department. Apr 1. PubMed PMC
HBM-Commission . Evaluation of biomonitoring results in medical practice - zur umweltmedizinischen Beurteilung von Human-Biomonitoring-Befunden in der arztlichen ¨ Praxis [in German] Vol. 5. Umweltmed Forsch Prax; 2000. pp. 177–180.
Hölzer J., Lilienthal H., Schümann M. Regul Toxicol Pharmacol. Vol. 121. Academic Press; 2021. Human Biomonitoring (HBM)-I values for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) - description, derivation and discussion. Apr 1. PubMed
Huang W., Smith T.J., Ngo L., et al. Environ Sci Technol. 41(8) American Chemical Society; 2007. Characterizing and biological monitoring of polycyclic aromatic hydrocarbons in exposures to diesel exhaust; pp. 2711–2716. Apr 15 [cited 2022 Sep 12] Available from: https://pubs.acs.org/doi/full/10.1021/es062863j. PubMed
IARC . IARC Monogr Eval Carcinog Risks to Humans. IARC; Lyon: 2010. VOLUME 92: some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. PubMed PMC
Jongeneelen F.J. Toxicol Lett. 231(2) Elsevier; 2014. A guidance value of 1-hydroxypyrene in urine in view of acceptable occupational exposure to polycyclic aromatic hydrocarbons; pp. 239–248. Dec 1. PubMed
Jongeneelen F.J., Leeuwen F.E.Van, Oosterink S., et al. Br J Ind Med. 47(7) BMJ Publishing Group; 1990. Ambient and biological monitoring of cokeoven workers: determinants of the internal dose of polycyclic aromatic hydrocarbons; p. 454. [cited 2022 Sep 12] Available from: /pmc/articles/PMC1035206/?report=abstract. PubMed PMC
Kamangar F., Strickland P.T., Pourshams A., et al. High exposure to polycyclic aromatic hydrocarbons may contribute to high risk of esophageal cancer in northeastern Iran. Anticancer Res. 2005;25(1 B):425–428. PubMed
Khoury C., Werry K., Haines D., Walker M., Malowany M. Int J Hyg Environ Health. 221(4) Urban & Fischer; 2018. Human biomonitoring reference values for some non-persistent chemicals in blood and urine derived from the Canadian Health Measures Survey 2009–2013; pp. 684–696. May 1. PubMed
Laitinen J., Mäkelä M., Mikkola J., Huttu I. Toxicol Lett. 192(1) Elsevier; 2010. Fire fighting trainers' exposure to carcinogenic agents in smoke diving simulators; pp. 61–65. Jan 15. PubMed
Laitinen J.A., Koponen J., Koikkalainen J., Kiviranta H. Toxicol Lett. 231(2) Elsevier; 2014. Firefighters' exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams; pp. 227–232. Dec 1. PubMed
Lutier S., Maître A., Bonneterre V., et al. Environ. Res. Vol. 147. Academic Press; 2016. Urinary elimination kinetics of 3-hydroxybenzo(a)pyrene and 1-hydroxypyrene of workers in a prebake aluminum electrode production plant: evaluation of diuresis correction methods for routine biological monitoring; pp. 469–479. May 1. PubMed
Moorthy B., Chu C., Carlin D.J. Toxicol Sci. 145(1) Oxford Academic; 2015. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer; pp. 5–15. May 1 [cited 2021 Sep 17] Available from: https://academic.oup.com/toxsci/article/145/1/5/1627571. PubMed PMC
Motorykin O., Santiago-Delgado L., Rohlman D., et al. Sci Total Environ. Vol. 514. NIH Public Access; 2015. Metabolism and excretion rates of parent and hydroxy-PAHs in urine collected after consumption of traditionally smoked salmon for Native American volunteers; p. 170. Sep 1. PubMed PMC
Navarro K.M., Kleinman M.T., Mackay C.E., et al. Environ Res. Vol. 173. Academic Press; 2019. Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality; pp. 462–468. Jun 1. PubMed
Nedělníková H. Statistical yearbook 2020. 2021. https://www.hzscr.cz/clanek/statistical-yearbooks.aspx Available from.
Nilsson S., Smurthwaite K., Aylward L.L., et al. Int J Hyg Environ Health. Vol. 246. Urban & Fischer; 2022. Serum concentration trends and apparent half-lives of per- and polyfluoroalkyl substances (PFAS) in Australian firefighters. Sep 1. PubMed
Nilsson S., Smurthwaite K., Aylward L.L., et al. Environ Res. Vol. 215. Academic Press; 2022. Associations between serum perfluoroalkyl acid (PFAA) concentrations and health related biomarkers in firefighters. Dec 1. PubMed
Petersen K.U., Larsen J.R., Deen L., et al. J Toxicol Environ Health B Crit Rev. 23(6) 2020. Per- and polyfluoroalkyl substances and male reproductive health: a systematic review of the epidemiological evidence; pp. 276–291. Aug 17 [cited 2022 Jan 7] Available from: https://pubmed.ncbi.nlm.nih.gov/32741292/ PubMed
RECETOX The CELSPAC - FireExpo. 2022. https://www.recetox.muni.cz/hear/projects/celspac-fireexpo Available from.
Rotander A., Toms L.M.L., Aylward L., Kay M., Mueller J.F. Environ Int. Vol. 82. Pergamon; 2015. Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF) pp. 28–34. Sep 1. PubMed
Schnell T., Suhr F., Weierstall-Pust R. Eur J Psychotraumatol. 11(1) Taylor & Francis; 2020. Post-traumatic stress disorder in volunteer firefighters: influence of specific risk and protective factors. [cited 2022 Sep 12] Available from: /pmc/articles/PMC1035206/?report=abstract. PubMed PMC
Schulz C., Wilhelm M., Heudorf U., Kolossa-Gehring M. Int J Hyg Environ Health. 215(1) Urban & Fischer; 2011. Update of the reference and HBM values derived by the German Human Biomonitoring Commission; pp. 26–35. Dec 1. PubMed
Schümann M., Lilienthal H., Hölzer J. Regul Toxicol Pharmacol. Vol. 121. Academic Press; 2021. Human biomonitoring (HBM)-II values for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) - description, derivation and discussion. Apr 1. PubMed
Shaw S.D., Berger M.L., Harris J.H., et al. Chemosphere. 91(10) Pergamon; 2013. Persistent organic pollutants including polychlorinated and polybrominated dibenzo-p-dioxins and dibenzofurans in firefighters from Northern California; pp. 1386–1394. Jun 1. PubMed
Soteriades E.S., Smith D.L., Tsismenakis A.J., M.Baur D., Kales S.N. Cardiol Rev. 19(4) 2011. Cardiovascular disease in US firefighters: a systematic review; pp. 202–215. Jul [cited 2021 Sep 20] Available from: https://pubmed.ncbi.nlm.nih.gov/21646874/ PubMed
Steenland K., Winquist A. Environ Res. Vol. 194. Academic Press; 2021. PFAS and cancer, a scoping review of the epidemiologic evidence. Mar 1. PubMed PMC
Sykorova B., Kucbel M., Raclavska H., Drozdova J., Raclavsky K. Environ Energy Appl Technol - Proc 2014 3rd Int Conf Front Energy Environ Eng ICFEEE 2014. CRC Press/Balkema; 2015. Seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in the air of Moravian-silesian region, czech republic; pp. 367–372.
Trowbridge J., Gerona R.R., Lin T., et al. Environ Sci Technol. 54(6) American Chemical Society; 2020. Exposure to perfluoroalkyl substances in a cohort of women firefighters and office workers in San Francisco; pp. 3363–3374. Feb 26. PubMed PMC
Unwin J., Cocker J., Scobbie E., Chambers H. Ann Occup Hyg. 50(4) Oxford Academic; 2006. An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK; pp. 395–403. Jun 1 [cited 2022 Aug 28] Available from: https://academic.oup.com/annweh/article/50/4/395/227318. PubMed
Wickham H. Springer-Verlag; New York: 2016. ggplot2: Elegant Graphics for Data Analysis. Aug 17 [cited 2022 Jan 7] Available from: https://pubmed.ncbi.nlm.nih.gov/32741292/
Xu Y., Fletcher T., Pineda D., et al. Environ Health Perspect. 128(7) 2020. Serum half-lives for short- and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam; pp. 1–11. Jul 1 [cited 2022 Jan 10] Available from: https://ehp.niehs.nih.gov/doi/abs/10.1289/EHP6785. PubMed PMC
Yang Z., Guo C., Li Q., et al. Environ Pollut. Vol. 290. Elsevier; 2021. Human health risks estimations from polycyclic aromatic hydrocarbons in serum and their hydroxylated metabolites in paired urine samples. Dec 1. PubMed
Identification of Real-Life Mixtures Using Human Biomonitoring Data: A Proof of Concept Study