Development of a supramolecular solvent-based extraction method for application to quantitative analyses of a wide range of organic contaminants in indoor dust
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-32743S
Grantová Agentura České Republiky
LM2023069
Ministerstvo Školství, Mládeže a Tělovýchovy
NOR/POLNOR/i-CLARE/0038/2019
National Centre for Research and Development in Poland
857560
Horizon 2020 Framework Programme
PubMed
38995406
PubMed Central
PMC11330406
DOI
10.1007/s00216-024-05433-3
PII: 10.1007/s00216-024-05433-3
Knihovny.cz E-zdroje
- Klíčová slova
- Indoor environments, PFAS, Pesticides, Plastic additives, SUPRAS,
- Publikační typ
- časopisecké články MeSH
This study investigates the efficacy of supramolecular solvent (SUPRAS) in extracting a diverse spectrum of organic contaminants from indoor dust. Initially, seven distinct SUPRAS were assessed across nine categories of contaminants to identify the most effective one. A SUPRAS comprising Milli-Q water, tetrahydrofuran, and hexanol in a 70:20:10 ratio, respectively, demonstrated the best extraction performance and was employed for testing a wider array of organic contaminants. Furthermore, we applied the selected SUPRAS for the extraction of organic compounds from the NIST Standard Reference Material (SRM) 2585. In parallel, we performed the extraction of NIST SRM 2585 with conventional extraction methods using hexane:acetone (1:1) for non-polar contaminants and methanol (100%) extraction for polar contaminants. Analysis from two independent laboratories (in Norway and the Czech Republic) demonstrated the viability of SUPRAS for the simultaneous extraction of twelve groups of organic contaminants with a broad range of physico-chemical properties including plastic additives, pesticides, and combustion by-products. However, caution is advised when employing SUPRAS for highly polar contaminants like current-use pesticides or volatile substances like naphthalene.
Fram Center NILU Hjalmar Johansens Gate 14 9007 Tromsø Norway
Institute of Biotechnology and Molecular Medicine Kampinoska 25 80 180 Gdańsk Poland
NILU Instituttveien 18 Kjeller 2007 Lillestrøm Norway
RECETOX Faculty of Science Masaryk University Kotlářská 2 61137 Brno Czechia
Zobrazit více v PubMed
Daryanavard SM, Zolfaghari H, Abdel-Rehim A, Abdel-Rehim M. Recent applications of microextraction sample preparation techniques in biological samples analysis. Biomed Chromatogr. 2021;35(7):e5105. 10.1002/bmc.5105 PubMed DOI
Rubio S. Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead. Anal Bioanal Chem. 2020;412(24):6037–58. 10.1007/s00216-020-02559-y PubMed DOI
González-Rubio S, Caballero-Casero N, Ballesteros-Gómez A, Cuervo D, Muñoz G, Rubio S. Supramolecular solvents for making comprehensive liquid-liquid microextraction in multiclass screening methods for drugs of abuse in urine based on liquid chromatography-high resolution mass spectrometry. J Chromatogr A. 2023;1701:464061. 10.1016/j.chroma.2023.464061 PubMed DOI
Gutiérrez-Martín D, Restrepo-Montes E, Golovko O, López-Serna R, Aalizadeh R, Thomaidis NS, et al. Comprehensive profiling and semi-quantification of exogenous chemicals in human urine using HRMS-based strategies. Anal Bioanal Chem. 2023;415(29–30):7297–313. 10.1007/s00216-023-04998-9 PubMed DOI PMC
Lambropoulou DA, Albanis TA. Liquid-phase micro-extraction techniques in pesticide residue analysis. J Biochem Biophys Methods. 2007;70(2):195–228. 10.1016/j.jbbm.2006.10.004 PubMed DOI
Ochiai N, Sasamoto K, Kanda H, Pfannkoch E. Sequential stir bar sorptive extraction for uniform enrichment of trace amounts of organic pollutants in water samples. J Chromatogr A. 2008;1200(1):72–9. 10.1016/j.chroma.2008.05.069 PubMed DOI
Buldini PL, Ricci L, Sharma JL. Recent applications of sample preparation techniques in food analysis. J Chromatogr A. 2002;975(1):47–70. 10.1016/S0021-9673(02)01335-3 PubMed DOI
Ballesteros-Gómez A, Sicilia MD, Rubio S. Supramolecular solvents in the extraction of organic compounds A review. Anal Chim Acta. 2010;677(2):108–30. 10.1016/j.aca.2010.07.027 PubMed DOI
Llompart M, Celeiro M, Dagnac T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC Trends Anal Chem. 2019;116:136–50.10.1016/j.trac.2019.04.029 DOI
Dueñas-Mas MJ, Ballesteros-Gómez A, Rubio S. Supramolecular solvent-based microextraction probe for fast detection of bisphenols by ambient mass spectrometry. Chemosphere. 2022;294:133719. 10.1016/j.chemosphere.2022.133719 PubMed DOI
Ballesteros-Gómez A, Lunar L, Sicilia MD, Rubio S. Hyphenating supramolecular solvents and liquid chromatography: tips for efficient extraction and reliable determination of organics. Chromatographia. 2019;82(1):111–24.10.1007/s10337-018-3614-1 DOI
González-Rubio S, Ballesteros-Gómez A, García-Gómez D, Rubio S. Double-headed amphiphile-based sponge droplets: synthesis, characterization and potential for the extraction of compounds over a wide polarity range. Talanta. 2022;239:123108. 10.1016/j.talanta.2021.123108 PubMed DOI
Keddar MN, Ballesteros-Gómez A, Amiali M, Siles JA, Zerrouki D, Martín MA, et al. Efficient extraction of hydrophilic and lipophilic antioxidants from microalgae with supramolecular solvents. Sep Purif Technol. 2020;251:117327.10.1016/j.seppur.2020.117327 DOI
Sánchez-Vallejo C, Ballesteros-Gómez A, Rubio S. Tailoring composition and nanostructures in supramolecular solvents: impact on the extraction efficiency of polyphenols from vegetal biomass. Sep Purif Technol. 2022;292:120991.10.1016/j.seppur.2022.120991 DOI
Caballero-Casero N, Rubio S. Comprehensive supramolecular solvent-based sample treatment platform for evaluation of combined exposure to mixtures of bisphenols and derivatives by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2021;1144:14–25. 10.1016/j.aca.2020.11.057 PubMed DOI
Ballesteros-Gómez A, Rubio S. Environment-responsive alkanol-based supramolecular solvents: characterization and potential as restricted access property and mixed-mode extractants. Anal Chem. 2012;84(1):342–9. 10.1021/ac2026207 PubMed DOI
Ballesteros-Gómez A, Ballesteros J, Rubio S. Comprehensive characterization of organic compounds in indoor dust after generic sample preparation with SUPRAS and analysis by LC-HRMS/MS. Sci Total Environ. 2024;912:169390. 10.1016/j.scitotenv.2023.169390 PubMed DOI
Dueñas-Mas MJ, Ballesteros-Gómez A, Rubio S. Supramolecular solvent-based microextraction of aryl-phosphate flame retardants in indoor dust from houses and education buildings in Spain. Sci Total Environ. 2020;733:139291. 10.1016/j.scitotenv.2020.139291 PubMed DOI
López-Jiménez FJ, Rosales-Marcano M, Rubio S. Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2013;1303:1–8. 10.1016/j.chroma.2013.06.043 PubMed DOI
Li X, Huang A, Liao X, Chen J, Xiao Y. Restricted access supramolecular solvent based magnetic solvent bar liquid-phase microextraction for determination of non-steroidal anti-inflammatory drugs in human serum coupled with high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2020;1634:461700. 10.1016/j.chroma.2020.461700 PubMed DOI
Salatti-Dorado JÁ, González-Rubio S, García-Gómez D, Lucena R, Cárdenas S, Rubio S. A high thermally stable oligomer-based supramolecular solvent for universal headspace gas chromatography: proof-of-principle determination of residual solvents in drugs. Anal Chim Acta. 2019;1046:132–9. 10.1016/j.aca.2018.09.023 PubMed DOI
Takagai Y, Hinze WL. Cloud point extraction with surfactant derivatization as an enrichment step prior to gas chromatographic or gas chromatography−mass spectrometric analysis. Anal Chem. 2009;81(16):7113–22. 10.1021/ac9009963 PubMed DOI
Wang Y, McCaffrey J, Norwood DL. Recent advances in headspace gas chromatography. J Liq Chromatogr Relat Technol. 2008;31(11–12):1823–51.10.1080/10826070802129092 DOI
Merino F, Rubio S, Pérez-Bendito D. Mixed aggregate-based acid-induced cloud-point extraction and ion-trap liquid chromatography–mass spectrometry for the determination of cationic surfactants in sewage sludge. J Chromatogr A. 2003;998(1–2):143–54. 10.1016/S0021-9673(03)00565-X PubMed DOI
Seebunrueng K, Dejchaiwatana C, Santaladchaiyakit Y, Srijaranai S. Development of supramolecular solvent based microextraction prior to high performance liquid chromatography for simultaneous determination of phenols in environmental water. RSC Adv. 2017;7(79):50143–9.10.1039/C7RA07780G DOI
Martinefski M, Feizi N, Lunar ML, Rubio S. Supramolecular solvent-based high-throughput sample treatment platform for the biomonitoring of PAH metabolites in urine by liquid chromatography-tandem mass spectrometry. Chemosphere. 2019;237:124525. 10.1016/j.chemosphere.2019.124525 PubMed DOI
Oliveira FMD, Scheel GL, Augusti R, Tarley CRT, Nascentes CC. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine. Anal Chim Acta. 2020;1106:52–60. 10.1016/j.aca.2020.01.061 PubMed DOI
Melymuk L, Demirtepe H, Jílková SR. Indoor dust and associated chemical exposures. Curr Opin Environ Sci Health. 2020;15:1–6.10.1016/j.coesh.2020.01.005 DOI
Lucattini L, Poma G, Covaci A, De Boer J, Lamoree MH, Leonards PEG. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere. 2018;201:466–82. 10.1016/j.chemosphere.2018.02.161 PubMed DOI
Demirtepe H, Melymuk L, Diamond ML, Bajard L, Vojta Š, Prokeš R, et al. Linking past uses of legacy SVOCs with today’s indoor levels and human exposure. Environ Int. 2019;127:653–63. 10.1016/j.envint.2019.04.001 PubMed DOI
Řiháčková K, Pindur A, Komprdová K, Pálešová N, Kohoutek J, Šenk P, et al. The exposure of Czech firefighters to perfluoroalkyl substances and polycyclic aromatic hydrocarbons: CELSPAC – FIREexpo case-control human biomonitoring study. Sci Total Environ. 2023;881:163298. 10.1016/j.scitotenv.2023.163298 PubMed DOI PMC
Degrendele C, Prokeš R, Šenk P, Jílková SR, Kohoutek J, Melymuk L, et al. Human exposure to pesticides in dust from two agricultural sites in South Africa. Toxics. 2022;10(10):629. 10.3390/toxics10100629 PubMed DOI PMC
Melymuk L, Jílková SR, Kolář M, Svobodová P, Vrana B, Hilscherová K. Questioning the appropriateness of sieving for processing indoor settled dust samples. J Environ Expo Assess. 2022;1(3):15.10.20517/jeea.2022.12 DOI
Wietzoreck M, Kyprianou M, Musa Bandowe BA, Celik S, Crowley JN, Drewnick F, et al. Polycyclic aromatic hydrocarbons (PAHs) and their alkylated, nitrated and oxygenated derivatives in the atmosphere over the Mediterranean and Middle East seas. Atmospheric Chem Phys. 2022;22(13):8739–66.10.5194/acp-22-8739-2022 DOI
Vykoukalová M, Venier M, Vojta Š, Melymuk L, Bečanová J, Romanak K, et al. Organophosphate esters flame retardants in the indoor environment. Environ Int. 2017;106:97–104. 10.1016/j.envint.2017.05.020 PubMed DOI
Venier M, Audy O, Vojta Š, Bečanová J, Romanak K, Melymuk L, et al. Brominated flame retardants in the indoor environment — comparative study of indoor contamination from three countries. Environ Int. 2016;94:150–60. 10.1016/j.envint.2016.04.029 PubMed DOI
Jílková S, Melymuk L, Vojta Š, Vykoukalová M, Bohlin-Nizzetto P, Klánová J. Small-scale spatial variability of flame retardants in indoor dust and implications for dust sampling. Chemosphere. 2018;206:132–41. 10.1016/j.chemosphere.2018.04.146 PubMed DOI
Nežiková B, Degrendele C, Bandowe BAM, Holubová Šmejkalová A, Kukučka P, Martiník J, et al. Three years of atmospheric concentrations of nitrated and oxygenated polycyclic aromatic hydrocarbons and oxygen heterocycles at a central European background site. Chemosphere. 2021;269:128738. 10.1016/j.chemosphere.2020.128738 PubMed DOI
Sobotka J, Smedes F, Vrana B. Performance comparison of silicone and low-density polyethylene as passive samplers in a global monitoring network for aquatic organic contaminants. Environ Pollut. 2022;302:119050. 10.1016/j.envpol.2022.119050 PubMed DOI
Rusina TP, Jílková SR, Melymuk L, Vrana B, Smedes F. Accessibility investigation of semi-volatile organic compounds in indoor dust estimated by multi-ratio equilibrium passive sampling. Environ Res. 2023;219:115105. 10.1016/j.envres.2022.115105 PubMed DOI
Routti H, Harju M, Lühmann K, Aars J, Ask A, Goksøyr A, et al. Concentrations and endocrine disruptive potential of phthalates in marine mammals from the Norwegian Arctic. Environ Int. 2021;152:106458. 10.1016/j.envint.2021.106458 PubMed DOI
Lippold A, Harju M, Aars J, Blévin P, Bytingsvik J, Gabrielsen GW, et al. Occurrence of emerging brominated flame retardants and organophosphate esters in marine wildlife from the Norwegian Arctic. Environ Pollut. 2022;315:120395. 10.1016/j.envpol.2022.120395 PubMed DOI
Hanssen L, Dudarev AA, Huber S, Odland JØ, Nieboer E, Sandanger TM. Partition of perfluoroalkyl substances (PFASs) in whole blood and plasma, assessed in maternal and umbilical cord samples from inhabitants of Arctic Russia and Uzbekistan. Sci Total Environ. 2013;447:430–7. 10.1016/j.scitotenv.2013.01.029 PubMed DOI
National Institute of Standards and Technology. Standard Reference Material 2585, Organic contaminants in house dust. SRM 2582. U.S. Department of Commerce, Gaithersburg MD; 2018.
Van Den Eede N, Dirtu AC, Ali N, Neels H, Covaci A. Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust. Talanta. 2012;89:292–300. 10.1016/j.talanta.2011.12.031 PubMed DOI
Larsson K, Lindh CH, Jönsson BA, Giovanoulis G, Bibi M, Bottai M, et al. Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ Int. 2017;102:114–24. 10.1016/j.envint.2017.02.006 PubMed DOI
Luongo G, Östman C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air. 2016;26(3):414–25. 10.1111/ina.12217 PubMed DOI
Mercier F, Gilles E, Saramito G, Glorennec P, Le Bot B. A multi-residue method for the simultaneous analysis in indoor dust of several classes of semi-volatile organic compounds by pressurized liquid extraction and gas chromatography/tandem mass spectrometry. J Chromatogr A. 2014;1336:101–11. 10.1016/j.chroma.2014.02.004 PubMed DOI
Weiss JM, Gustafsson Å, Gerde P, Bergman Å, Lindh CH, Krais AM. Daily intake of phthalates, MEHP, and DINCH by ingestion and inhalation. Chemosphere. 2018;208:40–9. 10.1016/j.chemosphere.2018.05.094 PubMed DOI
Bergh C, Luongo G, Wise S, Östman C. Organophosphate and phthalate esters in standard reference material 2585 organic contaminants in house dust. Anal Bioanal Chem. 2012;402(1):51–9. 10.1007/s00216-011-5440-2 PubMed DOI
Fan X, Kubwabo C, Rasmussen PE, Wu F. Non-PBDE halogenated flame retardants in Canadian indoor house dust: sampling, analysis, and occurrence. Environ Sci Pollut Res. 2016;23(8):7998–8007.10.1007/s11356-015-5956-7 PubMed DOI
Reiner JL, Blaine AC, Higgins CP, Huset C, Jenkins TM, Kwadijk CJAF, et al. Polyfluorinated substances in abiotic standard reference materials. Anal Bioanal Chem. 2015;407(11):2975–83. 10.1007/s00216-013-7330-2 PubMed DOI
Mayer L, Degrendele C, Šenk P, Kohoutek J, Přibylová P, Kukučka P, et al. Widespread pesticide distribution in the European atmosphere questions their degradability in air. Environ Sci Technol. 2024;58(7):3342–52. PubMed PMC
Peyrovi M, Hadjmohammadi M. Alkanol-based supramolecular solvent microextraction of organophosphorus pesticides and their determination using high-performance liquid chromatography. J Iran Chem Soc. 2017;14(5):995–1004.10.1007/s13738-017-1049-5 DOI
Luque N, Ballesteros-Gómez A, Van Leeuwen S, Rubio S. A simple and rapid extraction method for sensitive determination of perfluoroalkyl substances in blood serum suitable for exposure evaluation. J Chromatogr A. 2012;1235:84–91. 10.1016/j.chroma.2012.02.055 PubMed DOI
González-Rubio S, Ballesteros-Gómez A, Muñoz G, Rubio S. Cubosomic supramolecular solvents: synthesis, characterization, and potential for high-throughput multiclass testing of banned substances in urine. Anal Chem. 2022;94(9):4103–11. 10.1021/acs.analchem.2c00082 PubMed DOI
Moral A, Sicilia MD, Rubio S. Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection. Anal Chim Acta. 2009;650(2):207–13. 10.1016/j.aca.2009.07.056 PubMed DOI
Zohrabi P, Shamsipur M, Hashemi M, Hashemi B. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta. 2016;160:340–6. 10.1016/j.talanta.2016.07.036 PubMed DOI