Widespread Pesticide Distribution in the European Atmosphere Questions their Degradability in Air

. 2024 Feb 07 ; 58 (7) : 3342-52. [epub] 20240207

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38323876

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

Atmospheric Chemistry Department Leibniz Institute for Tropospheric Research Leipzig 04318 Germany

Atmospheric Sounding Station El Arenosillo National Institute for Aerospace Technology Huelva 21130 Spain

Bavarian Environment Agency Augsburg 86179 Germany

Centre for Environmental and Climate Research Lund University Lund 223 62 Sweden

Centre for Ocean and Atmospheric Sciences University of East Anglia Norwich NR4 7TJ United Kingdom

Department of Chemistry University of Crete Heraklion 715 00 Greece

Department of Physics Lund University Lund 223 63 Sweden

DRD GES Observatoire Pérenne de l'Environnement ANDRA Bure 55290 France

Environment Agency Austria Wien 1090 Austria

Environmental Research Station Schneefernerhaus Zugspitze 82475 Germany

Faculty of Science RECETOX Masaryk University Brno 602 00 Czech Republic

Finnish Meteorological Institute Helsinki 00560 Finland

Géosciences Environnement Toulouse CNRS IRD University of Toulouse Toulouse 31400 France

GeoSphere Austria Wien 1190 Austria

German Environment Agency Zugspitze 82475 Germany

Institut des Géoscience de l'Environnement University Grenoble Alpes Grenoble 38058 France

Institute for Atmospheric and Earth System Research University of Helsinki Helsinki 00100 Finland

Institute of Environmental Protection National Research Institute Warsaw 02 170 Poland

Institute of Forestry and Engineering Estonian University of Life Sciences Tartu 51014 Estonia

Institute of Physics University of Tartu Tartu 50411 Estonia

Laboratoire d'Aérologie CNRS IRD University of Toulouse Toulouse 31400 France

Laboratory of Atmospheric Chemistry Paul Scherrer Institute Villigen 5232 Switzerland

Laboratory of Chemistry and Environment CNRS Aix Marseille University Marseille 13003 France

Multiphase Chemistry Department Max Planck Institute for Chemistry Mainz 55128 Germany

National Atmospheric Observatory Košetice KošeticeCzech Hydrometeorological Institute Košetice 395 01 Czech Republic

National Centre for Atmospheric Sciences University of East Anglia Norwich NR4 7TJ United Kingdom

National Centre of Scientific Research Demokritos Institute of Nuclear Radiological Science Technology Energy and Safety ENRACT Agia Paraskevi 15310 Greece

National Institute for Public Health and the Environment Bilthoven 3721 MA the Netherlands

Norwegian Institute for Air Research Kjeller 2007 Norway

School of Natural Sciences and Centre for Climate and Air Pollution Studies Ryan Institute University of Galway Galway H91 CF50 Ireland

Slovak Hydrometeorological Institute Bratislava 833 15 Slovakia

Spanish Research Council Barcelona 08034 Spain

Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland

UK Centre for Ecology and Hydrology Penicuik EH260QB; United Kingdom

Zobrazit více v PubMed

Alexandratos N.; Bruinsma J.. World agriculture towards 2030/2050: The 2012 revision. ESA Working Paper 12–03; Rome. www.fao.org/economic/esa (accessed April 20, 2022).

FAOSTAT. FAOSTAT: Pesticides use. In FAO.org. www.fao.org/faostat/en/#data/RP (accessed March 21, 2022).

Sharma A.; Kumar V.; Shahzad B.; Tanveer M.; Sidhu G. P. S.; Handa N.; Kohli S. K.; Yadav P.; Bali A. S.; Parihar R. D.; Dar O. I.; Singh K.; Jasrotia S.; Bakshi P.; Ramakrishnan M.; Kumar S.; Bhardwaj R.; Thukral A. K. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 144610.1007/s42452-019-1485-1. DOI

Franklin J.; Atkinson R.; Howard P. H.; Orlando J. J.; Seigneur C.; Wallington T. J.; Zetzsch C.. Quantitative Determination of Persistence in Air. In Criteria for Persistence and Long-Range Transport of Chemicals in the Environment; Klecka G.; Boethling B.; Franklin J.; Grady L.; Graham D.; Howard P. H.; Kannan K.; Larson R. J.; Mackay D.; Muir D.; van de Meent D., Eds.; SETAC press: Pensacola, 2000; pp 7–62.

British Crop Protection Council . The Pesticide Manual: A World Compendium, 16th ed.; MacBean C., Ed.;BCPC Publications: Alton, UK, 2012.

Carvalho F. P. Pesticides, Environment, and Food Safety. Food Energy Secur. 2017, 6, 48–60. 10.1002/fes3.108. DOI

Rico A.; Van den Brink P. J. Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action. Environ. Toxicol. Chem. 2015, 34, 1907–1917. 10.1002/etc.3008. PubMed DOI

Sánchez-Bayo F.; Wyckhuys K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. 10.1016/j.biocon.2019.01.020. DOI

Vorkamp K.; Rigét F. F. A review of new and current-use contaminants in the Arctic environment: evidence of long-range transport and indications of bioaccumulation. Chemosphere 2014, 111, 379–395. 10.1016/j.chemosphere.2014.04.019. PubMed DOI

Arctic Monitoring and Assessment Programme (AMAP) . AMAP Assessment 2016: Chemicals of Emerging Arctic Concern; Oslo, Norway. www.amap.no (accessed March 19, 2023).

Mostafalou S.; Abdollahi M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91 (2), 549–599. 10.1007/s00204-016-1849-x. PubMed DOI

van den Berg F.; Kubiak R.; Benjey W. G.; Majewski M. S.; Yates S. R.; Reeves G. L.; Smelt J. H.; van der Linden A. M. A. Emission of pesticides into the air. Water Air Soil Pollut. 1999, 115, 195–218. 10.1023/A:1005234329622. DOI

Glotfelty D. E.; Leech M. M.; Jersey J.; Taylor A. W. Volatilization and wind erosion of soil surface applied atrazine, simazine, alachlor and toxaphene. J. Agric. Food Chem. 1989, 37, 546–551. 10.1021/jf00086a059. DOI

Davie-Martin C. L.; Hageman K. J.; Chin Y. P.; Rougé V.; Fujita Y. Influence of temperature, relative humidity, and soil properties on the soil-air partitioning of semivolatile pesticides: laboratory measurements and predictive models. Environ. Sci. Technol. 2015, 49 (17), 10431–10439. 10.1021/acs.est.5b02525. PubMed DOI

Degrendele C.; Okonski K.; Melymuk L.; Landlová L.; Kukučka P.; Audy O.; Kohoutek J.; Čupr P.; Klánová J. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides. Atmos. Chem. Phys. 2016, 16 (3), 1531–1544. 10.5194/acp-16-1531-2016. DOI

Désert M.; Ravier S.; Gille G.; Quinapallo A.; Armengaud A.; Pochet G.; Savelli J. L.; Wortham H.; Quivet E. Spatial and temporal distribution of current-use pesticides in ambient air of Provence-Alpes-Côte-d’Azur Region and Corsica, France. Atmos. Environ. 2018, 192, 241–256. 10.1016/j.atmosenv.2018.08.054. DOI

López A.; Yusà V.; Muñoz A.; Vera T.; Borràs E.; Ródenas M.; Coscollà C. Risk assessment of airborne pesticides in a Mediterranean region of Spain. Sci. Total Environ. 2017, 574, 724–734. 10.1016/j.scitotenv.2016.08.149. PubMed DOI

Klöppel H.; Kördel W. Pesticides volatilisation and exposure of terrestrial ecosystems. Chemosphere 1997, 35 (6), 1271–1289. 10.1016/S0045-6535(97)00213-0. DOI

Gkotsis G.; Nika M. C.; Nikolopoulou V.; Alygizakis N.; Bizani E.; Aalizadeh R.; Badry A.; Chadwick E.; Cincinelli A.; Claßen D.; Danielsson S.; Dekker R.; Duke G.; Drost W.; Glowacka N.; Göckener B.; Jansman H. A. H.; Juergens M.; Knopf B.; Koschorreck J.; Krone O.; Martellini T.; Movalli P.; Persson S.; Potter E. D.; Rohner S.; Roos A.; O’ Rourke E.; Siebert U.; Treu G.; van den Brink N. W.; Walker L. A.; Williams R.; Slobodnik J.; Thomaidis N. S. Assessment of Contaminants of Emerging Concern in European apex predators and their prey by LC-QToF MS wide-scope target analysis. Environ. Int. 2022, 170, 10762310.1016/j.envint.2022.107623. PubMed DOI

Feltracco M.; Barbaro E.; Maule F.; Bortolini M.; Gabrieli J.; de Blasi F.; Cairns W. R.; Dallo F.; Zangrando R.; Barbante C.; Gambaro A. Airborne polar pesticides in rural and mountain sites of north-eastern Italy: an emerging air quality issue. Environ. Pollut. 2022, 308, 11965710.1016/j.envpol.2022.119657. PubMed DOI

Mai C.; Theobald N.; Lammel G.; Hühnerfuss H. Spatial, Seasonal and vertical distributions of currently-used pesticides in the marine boundary layer of the North Sea. Atmos. Environ. 2013, 75, 92–102. 10.1016/j.atmosenv.2013.04.027. DOI

Gao Y.; Zheng H.; Xia Y.; Chen M.; Meng X. Z.; Cai M. Spatial Distributions and seasonal changes of current-use pesticides from the North Pacific to the Arctic Oceans. J. Geophys. Res.: Atmos. 2019, 124 (16), 9716–9729. 10.1029/2018JD030186. DOI

Balmer J. E.; Morris A. D.; Hung H.; Jantunen L.; Vorkamp K.; Rigét F.; Evans M.; Houde M.; Muir D. C. G. Levels and trends of current-use pesticides (CUPs) in the Arctic: An updated review, 2010–2018. Emerging Contam. 2019, 5, 70–88. 10.1016/j.emcon.2019.02.002. DOI

Röhler L.; Schlabach M.; Haglund P.; Breivik K.; Kallenborn R.; Bohlin-Nizzetto P. Non-target and suspect characterisation of organic contaminants in Arctic air - Part 2: Application of a new tool for identification and prioritisation of Chemicals of Emerging Arctic Concern in air. Atmos. Chem. Phys. 2020, 20 (14), 9031–9049. 10.5194/acp-20-9031-2020. DOI

IVL, Nationell Luftövervakning 2019, Report No. C584 Swedish Environmental Research Institute: Stockholm: 2021.

UNEP. Stockholm Convention on Persistent Organic Pollutants (POPs) 2001http://chm.pops.int/tabid/208/Default.aspx (accessed March 20, 2023).

European Commission, Regulation No. 107/, Regulation of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing council directives 79/117/EEC and 91/414/EEC2009L3091, 2009.

Semeena V. S.; Lammel G. The significance of the grasshopper effect on the atmospheric distribution of persistent organic substances. Geophys. Res. Lett. 2005, 32 (7), L0780410.1029/2004GL022229. DOI

Bidleman T. F. Atmospheric processes. Environ. Sci. Technol. 1988, 22 (4), 361–367. 10.1021/es00169a002. PubMed DOI

Borrás E.; Ródenas M.; Vázquez M.; Vera T.; Muñoz A. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon. Atmos. Environ. 2015, 123, 112–120. 10.1016/j.atmosenv.2015.10.049. DOI

Murschell T.; Farmer D. K. Atmospheric OH oxidation of three chlorinated aromatic herbicides. Environ. Sci. Technol. 2018, 52 (8), 4583–4591. 10.1021/acs.est.7b06025. PubMed DOI

Murschell T.; Farmer D. K. Atmospheric OH oxidation chemistry of trifluralin and acetochlor. Environ. Sci. Process Impacts 2019, 21 (4), 650–658. 10.1039/C8EM00507A. PubMed DOI

Socorro J.; Durand A.; Temime-Roussel B.; Gligorovski S.; Wortham H.; Quivet E. The persistence of pesticides in atmospheric particulate phase: an emerging air quality issue. Sci. Rep. 2016, 6 (1), 3345610.1038/srep33456. PubMed DOI PMC

Socorro J.; Lakey P. S. J.; Han L.; Berkemeier T.; Lammel G.; Zetzsch C.; Pöschl U.; Shiraiwa M. Heterogeneous OH oxidation, shielding effects, and implications for the atmospheric fate of terbuthylazine and other pesticides. Environ. Sci. Technol. 2017, 51 (23), 13749–13754. 10.1021/acs.est.7b04307. PubMed DOI

Muñoz A.; Borrás E.; Vera T.; Colmenar I.; Ródenas M.; Gimeno C.; Fuentes E.; Coscollá C.; Calvete-Sogo H. Atmospheric degradation of two pesticides mixed with volatile organic compounds emitted by citrus trees. Ozone and secondary organic aerosol production. Atmos. Environ. 2023, 295, 11954110.1016/j.atmosenv.2022.119541. DOI

US EPA . Estimation Programs Interface SuiteTM for Microsoft Windows. United States Environmental Protection Agency: Washington, DC, USA, 2012.

CORINE Land Cover 2018, European Environment Agency (EEA). © European Union, Copernicus Land Monitoring Service. 2018.

López A.; Coscollà C.; Yusà V. Evaluation of sampling adsorbents and validation of a LC-HRMS method for determination of 28 airborne pesticides. Talanta 2018, 189, 211–219. 10.1016/j.talanta.2018.06.078. PubMed DOI

Pisso I.; Sollum E.; Grythe H.; Kristiansen N. I.; Cassiani M.; Eckhardt S.; Arnold D.; Morton D.; Thompson R. L.; Groot Zwaaftink C. D.; Evangeliou N.; Sodemann H.; Haimberger L.; Henne S.; Brunner D.; Burkhart J. F.; Fouilloux A.; Brioude J.; Philipp A.; Seibert P.; Stohl A. The Lagrangian particle dispersion model FLEXPART Version 10.4. Geosci. Model Dev. 2019, 12 (12), 4955–4997. 10.5194/gmd-12-4955-2019. DOI

Simon A.; Belluš M.; Čatlošová K.; Derková M.; Dian M.; Imrišek M.; Kaňák J.; Méri L.; Neštiak M.; Vivoda J. Numerical simulations of June 7, 2020 convective precipitation over Slovakia using deterministic, probabilistic, and convection-permitting approaches. Idöjaras 2021, 125 (4), 571–607. 10.28974/idojaras.2021.4.3. DOI

Collaud Coen M.; Andrews E.; Aliaga D.; Andrade M.; Angelov H.; Bukowiecki N.; Ealo M.; Fialho P.; Flentje H.; Hallar A. G.; Hooda R.; Kalapov I.; Krejci R.; Lin N. H.; Marinoni A.; Ming J.; Nguyen N. A.; Pandolfi M.; Pont V.; Ries L.; Rodríguez S.; Schauer G.; Sellegri K.; Sharma S.; Sun J.; Tunved P.; Velasquez P.; Ruffieux D. Identification of topographic features influencing aerosol observations at high altitude stations. Atmos. Chem. Phys. 2018, 18 (16), 12289–12313. 10.5194/acp-18-12289-2018. DOI

McClure C. D.; Jaffe D. A.; Gao H. Carbon Dioxide in the free troposphere and boundary layer at the Mt. Bachelor Observatory. Aerosol Air Qual. Res. 2016, 16 (3), 717–728. 10.4209/aaqr.2015.05.0323. DOI

Andrews E.; Ogren J. A.; Bonasoni P.; Marinoni A.; Cuevas E.; Rodríguez S.; Sun J. Y.; Jaffe D. A.; Fischer E. V.; Baltensperger U.; Weingartner E.; Coen M. C.; Sharma S.; Macdonald A. M.; Leaitch W. R.; Lin N. H.; Laj P.; Arsov T.; Kalapov I.; Jefferson A.; Sheridan P. Climatology of aerosol radiative properties in the free troposphere. Atmos. Res. 2011, 102, 365–393. 10.1016/j.atmosres.2011.08.017. DOI

Herrmann E.; Weingartner E.; Henne S.; Vuilleumier L.; Bukowiecki N.; Steinbacher M.; Conen F.; Coen M. C.; Hammer E.; Jurányi Z.; Baltensperger U.; Gysel M. Analysis of long-term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. J. Geophys. Res. 2015, 120 (18), 9459–9480. 10.1002/2015JD023660. DOI

Poltera Y.; Martucci G.; Collaud Coen M.; Hervo M.; Emmenegger L.; Henne S.; Brunner D.; Haefele A. PathfinderTURB: An automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch. Atmos. Chem. Phys. 2017, 17 (16), 10051–10070. 10.5194/acp-17-10051-2017. DOI

Lotteraner C.; Piringer M. Mixing-height time series from operational ceilometer aerosol-layer heights. Boundary Layer Meteorol. 2016, 161 (2), 265–287. 10.1007/s10546-016-0169-2. DOI

Frank G.; Salvamoser J.; Steinkopff T.. Radon-222 and Beryllium-7 as natural tracer, 2019https://www.dach2019.de/DACH2019-abstracts.pdf (accessed April 02, 2023).

Thomas W.Personal Communication DWD: Hohenpeißenberg, Germany; 2022.

Maturilli M.Ceilometer cloud base height from station Ny-Ålesund (2017–08 et Seq); Alfred Wegener Institute- Research Unit Potsdam, Germany, PANGAEA, 2022.

2004/248/EC Commission Decision of 10 March 2004 Concerning the Non-Inclusion of Atrazine in Annex I to Council Directive 91/414/EEC and the Withdrawal of Authorisations for Plant Protection Products Containing this Active Substance, 2004.

Chernyak S. M.; Rice C. P.; Mcconnell L. L. Evidence of currently-used pesticides in air, ice, fog, seawater and surface microlayer in the Bering and Chukchi Seas. Mar. Pollut. Bull. 1996, 32 (5), 410–419. 10.1016/0025-326X(95)00216-A. DOI

Muir D. C. G.; Teixeira C.; Wania F. Empirical and modeling evidence of regional atmospheric transport of current-use pesticides. Environ. Toxicol. Chem. 2004, 23 (10), 2421–2432. 10.1897/03-457. PubMed DOI

Fuhrimann S.; Klánová J.; Přibylová P.; Kohoutek J.; Dalvie M. A.; Röösli M.; Degrendele C. Qualitative Assessment of 27 current-use pesticides in air at 20 sampling sites across Africa. Chemosphere 2020, 258, 12733310.1016/j.chemosphere.2020.127333. PubMed DOI

Jablonowski N. D.; Schäffer A.; Burauel P. Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environ. Sci. Pollut. Res. 2011, 18 (2), 328–331. 10.1007/s11356-010-0431-y. PubMed DOI PMC

Information on Biocides - ECHA. https://echa.europa.eu/information-on-chemicals/biocidal-active-substances (accessed Jan 11, 2023).

Igel A. L.; Ekman A. M. L.; Leck C.; Tjernström M.; Savre J.; Sedlar J. The Free Troposphere as a potential source of Arctic boundary layer aerosol particles. Geophys. Res. Lett. 2017, 44 (13), 7053–7060. 10.1002/2017GL073808. DOI

Lewis K. A.; Tzilivakis J.; Warner D. J.; Green A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess.: Int. J. 2016, 22 (4), 1050–1064. 10.1080/10807039.2015.1133242. DOI

Götz C. W.; Scheringer M.; Macleod M.; Roth C. M.; Hungerbühler K. Alternative approaches for modeling gas-particle partitioning of semivolatile organic chemicals: model development and comparison. Environ. Sci. Technol. 2007, 41 (4), 1272–1278. 10.1021/es060583y. PubMed DOI

Krejci R.; Zieger P.. Personal Communication; University of Stockholm, 2023.

Harner T.; Bidleman T. F. Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environ. Sci. Technol. 1998, 32, 1494–1502. 10.1021/es970890r. DOI

Meyer T.; Lei Y. D.; Muradi I.; Wania F. Organic contaminant release from melting snow. 1. Influence of chemical partitioning. Environ. Sci. Technol. 2009, 43 (3), 657–662. 10.1021/es8020217. PubMed DOI

Atkinson R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 1985, 85 (1), 69–201. 10.1021/cr00071a004. DOI

Spivakovsky C. M.; Logan J. A.; Montzka S. A.; Balkanski Y. J.; Foreman-Fowler M.; Jones D. B. A.; Horowitz L. W.; Fusco A. C.; Brenninkmeijer C. A. M.; Prather M. J.; Wofsy S. C.; McElroy M. B. Three-Dimensional Climatological Distribution of Tropospheric OH: Update and evaluation. J. Geophys. Res.: Atmos. 2000, 105 (D7), 8931–8980. 10.1029/1999JD901006. DOI

Lammel G. Effects of time-averaging climate parameters on predicted multicompartmental fate of pesticides and POPs. Environ. Pollut. 2004, 128 (1–2), 291–302. 10.1016/j.envpol.2003.08.030. PubMed DOI

Beyer A.; Mackay D.; Matthies M.; Wania F.; Webster E. Assessing long-range transport potential of persistent organic pollutants. Environ. Sci. Technol. 2000, 34 (4), 699–703. 10.1021/es990207w. DOI

Bennett D. H.; McKone T. E.; Matthies M.; Kastenberg W. E. General formulation of characteristic travel distance for semivolatile organic chemicals in a multimedia environment. Environ. Sci. Technol. 1998, 32 (24), 4023–4030. 10.1021/es980328g. DOI

Mattei C.; Wortham H.; Quivet E. Heterogeneous degradation of Pesticides by OH radicals in the atmosphere: influence of humidity and particle type on the kinetics. Sci. Total Environ. 2019, 664, 1084–1094. 10.1016/j.scitotenv.2019.02.038. PubMed DOI

Smit A. A. M. F. R.; van den Berg F.; Leistra M.. Estimation Method for the Volatilisation of Pesticides from Fallow Soil, Technical Report 2, Environmental Planning Bureau Series DLO Winand Staring Centre: Wageningen, the Netherlands; 1997.

Smit A. A. M. F. R.; Leistra M.; van den Berg F.. Estimation Method for the Volatilisation of Pesticides from Plants, Technical Report 2, Environmental Planning Bureau Series; DLO Winand: Wageningen, the Netherlands, 1998.

Nuyttens D.; Devarrewaere W.; Verboven P.; Foqué D. Pesticide-laden dust emission and drift from treated seeds during seed drilling: a review. Pest. Manag. Sci. 2013, 69 (5), 564–575. 10.1002/ps.3485. PubMed DOI

Das S.; Hageman K. J. Influence of adjuvants on pesticide soil-air partition coefficients: laboratory measurements and predicted effects on volatilization. Environ. Sci. Technol. 2020, 54 (12), 7302–7308. 10.1021/acs.est.0c00964. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...