Occurrence of Pharmaceuticals and Other Anthropogenic Compounds in the Wastewater Effluent of Arctic Expedition Cruise Ships
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40385560
PubMed Central
PMC12080242
DOI
10.1021/acs.estlett.5c00209
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Cruise ship traffic in polar regions is increasing, but we lack a good understanding of the emissions from these ships to sensitive marine environments. Wastewater discharges may result in the release of contaminants of emerging concern into such environments. Treated wastewater from three expedition cruise ships was collected and analyzed with a focus on pharmaceuticals, personal care products, and industrial chemicals. Samples were screened using data-dependent acquisition using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). More than 160 compounds were identified at Schymanski level 1 or 2 (SL1 or SL2, respectively) in treated wastewater across all three ships. Twenty-seven compounds were identified in wastewater from all three ships, suggesting their potential wider presence in ship wastewater and warranting further investigation. For all ships, pharmaceuticals dominated in terms of the number of compounds identified at SL1 or SL2 (43-59%), primarily cardiovascular medications, followed by industrial chemicals (21-31%) and natural compounds (12-17%). Multiple antibiotics were identified at SL1, raising concerns that ship wastewater effluent could contribute to the undesired spread of antibiotic-resistance genes. With the ongoing growth of the cruise industry and uncertainties related to impacts on sensitive marine environments, further investigation of ship wastewater emissions is recommended.
HX 210 Pentonville Road N1 9JY London U K
Norwegian Institute for Water Research Økernveien 94 0579 Oslo Norway
RECETOX Faculty of Science Masaryk University Kotlarska 2 61137 Brno Czech Republic
Zobrazit více v PubMed
Chrysafis K. A.; Papadopoulou G. C.; Theotokas I. N. Measuring Financial Performance through Operating Business Efficiency in the Global Cruise Industry: A Fuzzy Benchmarking Study on the “Big Three.”. Tour Manag 2024, 100, 104830.10.1016/j.tourman.2023.104830. DOI
Cruise Lines International Association (CLIA) . State of the Cruise Industry Report. 2024. https://cruising.org/resources/2024-state-cruise-industry-report (accessed 2025-04-25).
Eckhardt S.; Hermansen O.; Grythe H.; Fiebig M.; Stebel K.; Cassiani M.; Baecklund A.; Stohl A. Sciences Ess Atmospheric Chemistry and Physics Climate of the Past Geoscientific Instrumentation Methods and Data Systems The Influence of Cruise Ship Emissions on Air Pollution in Svalbard-a Harbinger of a More Polluted Arctic?. Atmos. Chem. Phys. 2013, 13, 8401–8409. 10.5194/acp-13-8401-2013. DOI
Vicente-Cera I.; Moreno-Andrés J.; Amaya-Vías D.; Biel-Maeso M.; Pintado-Herrera M. G.; Lara-Martín P. A.; Acevedo-Merino A.; López-Ramírez J. A.; Nebot E. Chemical and Microbiological Characterization of Cruise Vessel Wastewater Discharges under Repair Conditions. Ecotoxicol Environ. Saf 2019, 169, 68–75. 10.1016/j.ecoenv.2018.11.008. PubMed DOI
Lloret J.; Carreño A.; Carić H.; San J.; Fleming L. E. Environmental and Human Health Impacts of Cruise Tourism: A Review. Mar. Pollut. Bull. 2021, 173, 112979.10.1016/j.marpolbul.2021.112979. PubMed DOI
Qi X.; Li Z.; Zhao C.; Zhang Q.; Zhou Y. Environmental Impacts of Arctic Shipping Activities: A Review. Ocean Coast Manag 2024, 247, 106936.10.1016/j.ocecoaman.2023.106936. DOI
Chen Q.; Lau Y.-y.; Ge Y. E.; Dulebenets M. A.; Kawasaki T.; Ng A. K. Y. Interactions between Arctic Passenger Ship Activities and Emissions. Transp Res. D Transp Environ 2021, 97, 102925.10.1016/j.trd.2021.102925. DOI
Ford J. D.; Smit B.; Wandel J. Vulnerability to Climate Change in the Arctic: A Case Study from Arctic Bay, Canada. Global Environmental Change 2006, 16 (2), 145–160. 10.1016/j.gloenvcha.2005.11.007. DOI
Mayer L.; Degrendele C.; Šenk P.; Kohoutek J.; Přibylová P.; Kukučka P.; Melymuk L.; Durand A.; Ravier S.; Alastuey A.; Baker A. R.; Baltensperger U.; Baumann-Stanzer K.; Biermann T.; Bohlin-Nizzetto P.; Ceburnis D.; Conil S.; Couret C.; Degórska A.; Diapouli E.; et al. Widespread Pesticide Distribution in the European Atmosphere Questions Their Degradability in Air. Environ. Sci. Technol. 2024, 58 (7), 3342–3352. 10.1021/acs.est.3c08488. PubMed DOI PMC
Tolvanen A.; Eilu P.; Juutinen A.; Kangas K.; Kivinen M.; Markovaara-Koivisto M.; Naskali A.; Salokannel V.; Tuulentie S.; Similä J. Mining in the Arctic Environment - A Review from Ecological, Socioeconomic and Legal Perspectives. J. Environ. Manage 2019, 233, 832–844. 10.1016/j.jenvman.2018.11.124. PubMed DOI
European Maritime Safety Agency . European Maritime Transport Environmental Report 2025. 2025.10.2800/3162144 DOI
International Maritime Organization (IMO) . Prevention of Pollution by sewage from ships. https://www.imo.org/en/OurWork/Environment/Pages/Sewage-Default.aspx (accessed 2024-07-09).
International Maritime Organization (IMO) . International Code for Ships Operating in Polar Waters (Polar Code). Resolution MSC.385(94), Adopted 21 November 2014; 2014. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MSCResolutions/MSC.385(94).pdf (accessed 2024-08-03).
Peng G.; Xu B.; Li D. Gray Water from Ships: A Significant Sea-Based Source of Microplastics?. Environ. Sci. Technol. 2022, 56 (1), 4–7. 10.1021/acs.est.1c05446. PubMed DOI
Backer H. Regional Work on Prevention of Pollution from Ships in the Baltic Sea - A Paradox or a Global Forerunner?. Mar Policy 2018, 98, 255–263. 10.1016/j.marpol.2018.09.022. DOI
Kumar M.; Ngasepam J.; Dhangar K.; Mahlknecht J.; Manna S. Critical Review on Negative Emerging Contaminant Removal Efficiency of Wastewater Treatment Systems: Concept, Consistency and Consequences. Bioresour. Technol. 2022, 352, 127054.10.1016/j.biortech.2022.127054. PubMed DOI
Kasprzyk-Hordern B.; Dinsdale R. M.; Guwy A. J. The Removal of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs during Wastewater Treatment and Its Impact on the Quality of Receiving Waters. Water Res. 2009, 43 (2), 363–380. 10.1016/j.watres.2008.10.047. PubMed DOI
Eniola J. O.; Kumar R.; Barakat M. A.; Rashid J. A Review on Conventional and Advanced Hybrid Technologies for Pharmaceutical Wastewater Treatment. J. Clean Prod 2022, 356, 131826.10.1016/j.jclepro.2022.131826. DOI
Barra Caracciolo A.; Topp E.; Grenni P. Pharmaceuticals in the Environment: Biodegradation and Effects on Natural Microbial Communities. A Review. J. Pharm. Biomed Anal 2015, 106, 25–36. 10.1016/j.jpba.2014.11.040. PubMed DOI
Kallenborn R.; Brorström-Lundén E.; Reiersen L. O.; Wilson S. Pharmaceuticals and Personal Care Products (PPCPs) in Arctic Environments: Indicator Contaminants for Assessing Local and Remote Anthropogenic Sources in a Pristine Ecosystem in Change. Environmental Science and Pollution Research 2018, 25 (33), 33001–33013. 10.1007/s11356-017-9726-6. PubMed DOI
Kallenborn R.; Fick J.; Lindberg R.; Moe M.; Nielsen K. M.; Tysklind M.; Vasskog T.. Pharmaceutical Residues in Northern European Environments: Consequences and Perspectives Background Information. In Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks; Kümmerer K., Ed.; Springer: Berlin, 2008; pp 61–74.
Ersoy Korkmaz N.; Aksu A.; Korkmaz N. E.; Karacık B.; Bayırhan İ.; Çaǧlar Balkıs N.; Gazioǧlu C.; Özsoy B.; Korkmaz N. Presence of Some Commonly Used Pharmaceutical Residues in Seawater and Net Plankton: A Case Study of Spitsbergen, Svalbard Archipelago. International Journal of Environment and Geoinformatics 2022, 9 (4), 1–10. 10.30897/ijegeo.1057819. DOI
Cowan E.; Oftebro T. L.; Kallenborn R.; Gabrielsen G. W.; Overjordet I. B.; Tiller R. Global Governance in Arctic Waters-New Times. New Stressors. Catching up with Pharmaceuticals. Polar Journal 2022, 1–20. 10.1080/2154896X.2022.2096865. DOI
Svavarsson J.; Guls H. D.; Sham R. C.; Leung K. M. Y.; Halldórsson H. P. Pollutants from Shipping - New Environmental Challenges in the Subarctic and the Arctic Ocean. Mar. Pollut. Bull. 2021, 164, 112004.10.1016/j.marpolbul.2021.112004. PubMed DOI
Sørensen L.; Schaufelberger S.; Igartua A.; Størseth T. R.; Øverjordet I. B. Non-Target and Suspect Screening Reveal Complex Pattern of Contamination in Arctic Marine Zooplankton. Sci. Total Environ. 2023, 864, 161056.10.1016/j.scitotenv.2022.161056. PubMed DOI
Westhof L.; Köster S.; Reich M. Occurrence of Micropollutants in the Wastewater Streams of Cruise Ships. Emerg Contam 2016, 2 (4), 178–184. 10.1016/j.emcon.2016.10.001. DOI
Moschet C.; Vermeirssen E. L. M.; Singer H.; Stamm C.; Hollender J. Evaluation of In-Situ Calibration of Chemcatcher Passive Samplers for 322 Micropollutants in Agricultural and Urban Affected Rivers. Water Res. 2015, 71, 306–317. 10.1016/j.watres.2014.12.043. PubMed DOI
Schymanski E. L.; Jeon J.; Gulde R.; Fenner K.; Ruff M.; Singer H. P.; Hollender J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. 10.1021/es5002105. PubMed DOI
Finckh S.; Beckers L. M.; Busch W.; Carmona E.; Dulio V.; Kramer L.; Krauss M.; Posthuma L.; Schulze T.; Slootweg J.; Von der Ohe P. C.; Brack W. A Risk Based Assessment Approach for Chemical Mixtures from Wastewater Treatment Plant Effluents. Environ. Int. 2022, 164, 107234.10.1016/j.envint.2022.107234. PubMed DOI
The Metabolomics Innovation Centre . T3DB. Toxic and Toxin Exposome Database. https://www.t3db.ca/ (accessed 2025-04-02).
United States Environmental Protection Agency . CompTox Chemicals Dashboard. https://comptox.epa.gov/dashboard/ (accessed 2025-04-02).
The Food Database . FooDB. https://www.foodb.ca/ (accessed 2025-04-02).
National Center for Biotechnology Information . PubChem. https://pubchem.ncbi.nlm.nih.gov/ (accessed 2025-04-02).
Drugbank . DrugBank Online | Database for Drug and Drug Target Info. https://go.drugbank.com/ (accessed 2025-04-02).
European Commission . CosIng - Cosmetics - GROWTH - European Commission. https://ec.europa.eu/growth/tools-databases/cosing/ (accessed 2025-04-02).
Schreder E. D.; La Guardia M. J. Flame Retardant Transfers from U.S. Households (Dust and Laundry Wastewater) to the Aquatic Environment. Environ. Sci. Technol. 2014, 48 (19), 11575–11583. 10.1021/es502227h. PubMed DOI
Edebali Ö.; Krupčíková S.; Goellner A.; Vrana B.; Muz M.; Melymuk L. Tracking Aromatic Amines from Sources to Surface Waters. Environ. Sci. Technol. Lett. 2024, 11 (5), 397–409. 10.1021/acs.estlett.4c00032. PubMed DOI PMC
Dube N.; Smolarz K.; Sokołowski A.; Świeżak J.; Øverjordet I. B.; Ellingsen I.; Wielogórska E.; Sørensen L.; Walecka D.; Kwaśniewski S. Human Pharmaceuticals in the Arctic - A Review. Chemosphere 2024, 364, 143172.10.1016/j.chemosphere.2024.143172. PubMed DOI
Ladhari A.; La Mura G.; Di Marino C.; Di Fabio G.; Zarrelli A. Sartans: What They Are for, How They Degrade, Where They Are Found and How They Transform. Sustain Chem. Pharm. 2021, 20, 100409.10.1016/j.scp.2021.100409. DOI
Castro G.; Carpinteiro I.; Rodríguez I.; Cela R. Determination of Cardiovascular Drugs in Sewage Sludge by Matrix Solid-Phase Dispersion and Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. Anal Bioanal Chem. 2018, 410 (26), 6807–6817. 10.1007/s00216-018-1268-3. PubMed DOI
Chia M. A.; Lorenzi A. S.; Ameh I.; Dauda S.; Cordeiro-Araújo M. K.; Agee J. T.; Okpanachi I. Y.; Adesalu A. T. Susceptibility of Phytoplankton to the Increasing Presence of Active Pharmaceutical Ingredients (APIs) in the Aquatic Environment: A Review. Aquatic Toxicology 2021, 234, 105809.10.1016/j.aquatox.2021.105809. PubMed DOI
Duarte J. A. P.; Ribeiro A. K. N.; de Carvalho P.; Bortolini J. C.; Ostroski I. C. Emerging Contaminants in the Aquatic Environment: Phytoplankton Structure in the Presence of Sulfamethoxazole and Diclofenac. Environmental Science and Pollution Research 2023, 30 (16), 46604–46617. 10.1007/s11356-023-25589-2. PubMed DOI PMC
Vorkamp K.; Carlsson P.; Corsolini S.; de Wit C. A.; Dietz R.; Gribble M. O.; Houde M.; Kalia V.; Letcher R. J.; Morris A.; Rigét F. F.; Routti H.; Muir D. C. G. Influences of Climate Change on Long-Term Time Series of Persistent Organic Pollutants (POPs) in Arctic and Antarctic Biota. Environ. Sci. Process Impacts 2022, 24 (10), 1643–1660. 10.1039/D2EM00134A. PubMed DOI
Routti H.; Harju M.; Lühmann K.; Aars J.; Ask A.; Goksøyr A.; Kovacs K. M.; Lydersen C. Concentrations and Endocrine Disruptive Potential of Phthalates in Marine Mammals from the Norwegian Arctic. Environ. Int. 2021, 152, 106458.10.1016/j.envint.2021.106458. PubMed DOI
Borgå K.; McKinney M. A.; Routti H.; Fernie K. J.; Giebichenstein J.; Hallanger I.; Muir D. C. G. The Influence of Global Climate Change on Accumulation and Toxicity of Persistent Organic Pollutants and Chemicals of Emerging Concern in Arctic Food Webs. Environ. Sci. Process Impacts 2022, 24 (10), 1544–1576. 10.1039/D1EM00469G. PubMed DOI
Arctic Monitoring & Assessment Programme (AMAP) . AMAP Assessment 2020: POPs and Chemicals of Emerging Arctic Concern: Influence of Climate Change. Tromsø, Norway, 2021.
Bartley M. C.; Tremblay T.; De Silva A. O.; Michelle Kamula C.; Ciastek S.; Kuzyk Z. Z. A. Sedimentary Records of Contaminant Inputs in Frobisher Bay, Nunavut. Environmental Science and Ecotechnology 2024, 18, 100313.10.1016/j.ese.2023.100313. PubMed DOI PMC
Ersoy Korkmaz N.; Aksu A.; Korkmaz N. E.; Karacık B.; Bayırhan İ.; Çaǧlar Balkıs N.; Gazioǧlu C.; Özsoy B.; Korkmaz N. Presence of Some Commonly Used Pharmaceutical Residues in Seawater and Net Plankton: A Case Study of Spitsbergen, Svalbard Archipelago. International Journal of Environment and Geoinformatics 2022, 9 (4), 1–10. 10.30897/ijegeo.1057819. DOI
Stroski K. M.; Luong K. H.; Challis J. K.; Chaves-Barquero L. G.; Hanson M. L.; Wong C. S. Wastewater Sources of Per- and Polyfluorinated Alkyl Substances (PFAS) and Pharmaceuticals in Four Canadian Arctic Communities. Science of The Total Environment 2020, 708, 134494.10.1016/j.scitotenv.2019.134494. PubMed DOI
Emnet P.; Gaw S.; Northcott G.; Storey B.; Graham L. Personal Care Products and Steroid Hormones in the Antarctic Coastal Environment Associated with Two Antarctic Research Stations, McMurdo Station and Scott Base. Environ. Res. 2015, 136, 331–342. 10.1016/j.envres.2014.10.019. PubMed DOI
Marine Traffic Data. Vessels. 2023. https://www.marinetraffic.com/en/data/ (accessed 2023-12-27).
Polartours . Our Fleet of Polar Expedition Ships. How to Choose the Best Ship 2025. https://www.polartours.com/hosts (accessed 2025-01-23).
P&O Cruises. Find a Cruise. Aurora Itenary . 2025. https://www.pocruises.com/find-a-cruise/R502/R502 (accessed 2025-01-23).
Kasprzyk-Hordern B.; Sims N.; Farkas K.; Jagadeesan K.; Proctor K.; Wade M. J.; Jones D. L. Wastewater-Based Epidemiology for Comprehensive Community Health Diagnostics in a National Surveillance Study: Mining Biochemical Markers in Wastewater. J. Hazard Mater. 2023, 450, 130989.10.1016/j.jhazmat.2023.130989. PubMed DOI
DeLorenzo M. E.; Fleming J. Individual and Mixture Effects of Selected Pharmaceuticals and Personal Care Products on the Marine Phytoplankton Species Dunaliella Tertiolecta. Arch. Environ. Contam. Toxicol. 2008, 54 (2), 203–210. 10.1007/s00244-007-9032-2. PubMed DOI
Deruytter D.; Baert J. M.; Nevejan N.; De Schamphelaere K. A. C.; Janssen C. R. Mixture Toxicity in the Marine Environment: Model Development and Evidence for Synergism at Environmental Concentrations. Environ. Toxicol. Chem. 2017, 36 (12), 3471–3479. 10.1002/etc.3913. PubMed DOI