Tracking Aromatic Amines from Sources to Surface Waters

. 2024 May 14 ; 11 (5) : 397-409. [epub] 20240410

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38765463

This review examines the environmental occurrence and fate of aromatic amines (AAs), a group of environmental contaminants with possible carcinogenic and mutagenic effects. AAs are known to be partially responsible for the genotoxic traits of industrial wastewater (WW), and AA antioxidants are acutely toxic to some aquatic organisms. Still, there are gaps in the available data on sources, occurrence, transport, and fate in domestic WW and indoor environments, which complicate the prevention of adverse effects in aquatic ecosystems. We review key domestic sources of these compounds, including cigarette smoke and grilled protein-rich foods, and their presence indoors and in aquatic matrices. This provides a basis to evaluate the importance of nonindustrial sources to the overall environmental burden of AAs. Appropriate sampling techniques for AAs are described, including copper-phthalocyanine trisulfonate materials, XAD resins in solid-phase extraction, and solid-phase microextraction methods, which can offer insights into AA sources, transport, and fate. Further discussion is provided on potential progress in the research of AAs and their behavior in an aim to support the development of a more comprehensive understanding of their effects and potential environmental risks.

Zobrazit více v PubMed

Benigni R.; Bossa C.; Netzeva T.; Rodomonte A.; Tsakovska I. Mechanistic QSAR of Aromatic Amines: New Models for Discriminating between Homocyclic Mutagens and Nonmutagens, and Validation of Models for Carcinogens. Environmental and Molecular Mutagenesis 2007, 48 (9), 754–771. 10.1002/em.20355. PubMed DOI

González N.; Aguinaga Martínez M. V.; Domini C. E.; Acebal C. C. Current Trends in Sample Preparation for the Determination of Primary Aromatic Amines in Environmental Samples. Trends in Environmental Analytical Chemistry 2023, 37, e0019710.1016/j.teac.2023.e00197. DOI

DeMarini D. M.; Carreón-Valencia T.; Gwinn W. M.; Hopf N. B.; Sandy M. S.; Bahadori T.; Calaf G. M.; Chen G.; de Conti A.; Fritschi L.; Gi M.; Josephy P. D.; Kirkeleit J.; Kjaerheim K.; Langouët S.; McElvenny D. M.; Sergi C. M.; Stayner L. T.; Toyoda T.; Grosse Y.; Benbrahim-Tallaa L.; El Ghissassi F.; Suonio E.; Turner M. C.; Cree I. A.; Mattock H.; Müller K.; Chung F.; Guyton K. Z.; Schubauer-Berigan M. K. Carcinogenicity of Some Aromatic Amines and Related Compounds. Lancet Oncology 2020, 21 (8), 1017–1018. 10.1016/S1470-2045(20)30375-2. PubMed DOI

Muz M.; Dann J. P.; Jäger F.; Brack W.; Krauss M. Identification of Mutagenic Aromatic Amines in River Samples with Industrial Wastewater Impact. Environ. Sci. Technol. 2017, 51 (8), 4681–4688. 10.1021/acs.est.7b00426. PubMed DOI

Fernández C.; Larrechi M. S.; Callao M. P. An Analytical Overview of Processes for Removing Organic Dyes from Wastewater Effluents. TrAC Trends in Analytical Chemistry 2010, 29 (10), 1202–1211. 10.1016/j.trac.2010.07.011. DOI

Pereira L.; Mondal P. K.; Alves M.. Aromatic Amines Sources, Environmental Impact and Remediation. In Pollutants in Buildings, Water and Living Organisms; Lichtfouse E., Schwarzbauer J., Robert D., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp 297–346.

National Toxicology Program. 15th Report on Carcinogens; U.S. Department of Health and Human Services: Research Triangle Park, NC, 2021.

Pira E.; Piolatto G.; Negri E.; Romano C.; Boffetta P.; Lipworth L.; McLaughlin J. K.; La Vecchia C. Bladder Cancer Mortality of Workers Exposed to Aromatic Amines: A 58-Year Follow-Up. JNCI: Journal of the National Cancer Institute 2010, 102 (14), 1096–1099. 10.1093/jnci/djq214. PubMed DOI

Ward E. M.; Sabbioni G.; DeBord D. G.; Teass A. W.; Brown K. K.; Talaska G. G.; Roberts D. R.; Ruder A. M.; Streicher R. P. Monitoring of Aromatic Amine Exposures in Workers at a Chemical Plant With a Known Bladder Cancer Excess. JNCI: Journal of the National Cancer Institute 1996, 88 (15), 1046–1053. 10.1093/jnci/88.15.1046. PubMed DOI

Freudenthal R. I.; Stephens E.; Anderson D. P. Determining the Potential of Aromatic Amines to Induce Cancer of the Urinary Bladder. Int. J. Toxicol 1999, 18 (5), 353–359. 10.1080/109158199225260. DOI

Ohe T.; Watanabe T.; Wakabayashi K. Mutagens in Surface Waters: A Review. Mutation research 2004, 567 (2–3), 109–149. 10.1016/j.mrrev.2004.08.003. PubMed DOI

Boettcher M.; Grund S.; Keiter S.; Kosmehl T.; Reifferscheid G.; Seitz N.; Rocha P. S.; Hollert H.; Braunbeck T. Comparison of in Vitro and in Situ Genotoxicity in the Danube River by Means of the Comet Assay and the Micronucleus Test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2010, 700 (1), 11–17. 10.1016/j.mrgentox.2010.04.016. PubMed DOI

Alink G. M.; Quik J. T. K.; Penders E. J. M.; Spenkelink A.; Rotteveel S. G. P.; Maas J. L.; Hoogenboezem W. Genotoxic Effects in the Eastern Mudminnow (Umbra Pygmaea L.) after Exposure to Rhine Water, as Assessed by Use of the SCE and Comet Assays: A Comparison between 1978 and 2005. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2007, 631 (2), 93–100. 10.1016/j.mrgentox.2007.03.011. PubMed DOI

Ho K. T.; Konovets I. M.; Terletskaya A. V.; Milyukin M. V.; Lyashenko A. V.; Shitikova L. I.; Shevchuk L. I.; Afanasyev S. A.; Krot Y. G.; Zorina-Sakharova K. Ye.; Goncharuk V. V.; Skrynnyk M. M.; Cashman M. A.; Burgess R. M. Contaminants, Mutagenicity and Toxicity in the Surface Waters of Kyiv, Ukraine. Mar. Pollut. Bull. 2020, 155, 111153.10.1016/j.marpolbul.2020.111153. PubMed DOI PMC

Reifferscheid G.; Grummt T. Genotoxicity in German Surface Waters - Results of a Collaborative Study. Water, Air, and Soil Pollution 2000, 123 (1), 67–79. 10.1023/A:1005201207088. DOI

Wang X.; Zhao G.; Wang H.; Liang J.; Xu S.; Chen S.; Xu A.; Wu L. Assessment of the Cytotoxic and Mutagenic Potential of the Jialu River and Adjacent Groundwater Using Human-Hamster Hybrid Cells. Journal of Environmental Sciences 2018, 70, 133–143. 10.1016/j.jes.2017.11.023. PubMed DOI

Chen X.; He T.; Yang X.; Gan Y.; Qing X.; Wang J.; Huang Y. Analysis, Environmental Occurrence, Fate and Potential Toxicity of Tire Wear Compounds 6PPD and 6PPD-Quinone. Journal of Hazardous Materials 2023, 452, 131245.10.1016/j.jhazmat.2023.131245. PubMed DOI

Zoroufchi Benis K.; Behnami A.; Minaei S.; Brinkmann M.; McPhedran K. N.; Soltan J. Environmental Occurrence and Toxicity of 6PPD Quinone, an Emerging Tire Rubber-Derived Chemical: A Review. Environ. Sci. Technol. Lett. 2023, 10 (10), 815–823. 10.1021/acs.estlett.3c00521. DOI

Hua X.; Wang D. Tire-Rubber Related Pollutant 6-PPD Quinone: A Review of Its Transformation, Environmental Distribution, Bioavailability, and Toxicity. Journal of Hazardous Materials 2023, 459, 132265.10.1016/j.jhazmat.2023.132265. PubMed DOI

Börnick H.; Schmidt T. C. Amines. Organic Pollutants in the Water Cycle 2006, 181–209. 10.1002/352760877X.ch8. DOI

IARC . List of Classifications; Agents Classified by the IARC Monographs, Volumes 1–135. 2024. https://monographs.iarc.who.int/list-of-classifications (accessed 2024-03-05).

Zhu J.; Aikawa B. Determination of Aniline and Related Mono-Aromatic Amines in Indoor Air in Selected Canadian Residences by a Modified Thermal Desorption GC/MS Method. Environ. Int. 2004, 30 (2), 135–143. 10.1016/S0160-4120(03)00168-5. PubMed DOI

Some Aromatic Amines and Related Compounds; IARC Monographs on the Identification of Carcinogenic Hazards to Humans, Vol. 127; International Agency for Research on Cancer: Lyon, France, 2021. PubMed

Akyüz M. Simultaneous Determination of Aliphatic and Aromatic Amines in Indoor and Outdoor Air Samples by Gas Chromatography-Mass Spectrometry. Talanta 2007, 71 (1), 486–492. 10.1016/j.talanta.2006.10.028. PubMed DOI

Zhang C.; Chen H.; Xue G.; Liu Y.; Chen S.; Jia C. A Critical Review of the Aniline Transformation Fate in Azo Dye Wastewater Treatment. Journal of Cleaner Production 2021, 321, 128971.10.1016/j.jclepro.2021.128971. DOI

Onuska F. I.; Terry K. A.; Maguire R. J. Analysis of Aromatic Amines in Industrial Wastewater by Capillary Gas Chromatography-Mass Spectrometry. Water Quality Research Journal 2000, 35 (2), 245–262. 10.2166/wqrj.2000.016. DOI

Akyüz M.; Ata Ş. Simultaneous Determination of Aliphatic and Aromatic Amines in Water and Sediment Samples by Ion-Pair Extraction and Gas Chromatography-Mass Spectrometry. Journal of Chromatography A 2006, 1129 (1), 88–94. 10.1016/j.chroma.2006.06.075. PubMed DOI

National Center for Biotechnology Information. 4-Aminoazobenzene. PubChem CID 6051, 2024. https://pubchem.ncbi.nlm.nih.gov/compound/4-Aminoazobenzene (accessed 2024-03-05).

Albahnasawi A.; Yüksel E.; Gürbulak E.; Duyum F. Fate of Aromatic Amines through Decolorization of Real Textile Wastewater under Anoxic-Aerobic Membrane Bioreactor. Journal of Environmental Chemical Engineering 2020, 8 (5), 104226.10.1016/j.jece.2020.104226. DOI

Chung K.-T. Azo Dyes and Human Health: A Review. Journal of Environmental Science and Health, Part C 2016, 34 (4), 233–261. 10.1080/10590501.2016.1236602. PubMed DOI

Choudhary G. Human Health Perspectives on Environmental Exposure to Benzidine: A Review. Chemosphere 1996, 32 (2), 267–291. 10.1016/0045-6535(95)00338-X. PubMed DOI

Shen F.; Wang L.-H.; Zhou Q.; Huang X.-H.; Zhang J.-Z.; Zhu P.-Y.; Dai X.-L.; Xu Y.-J. Simultaneous Determination of Aniline, Benzidine, Microcystins, and Carbaryl in Water Using Ultra-Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Water, Air, & Soil Pollution 2017, 228 (2), 69.10.1007/s11270-017-3260-5. DOI

Mazzo T. M.; Saczk A. A.; Umbuzeiro G. A.; Zanoni M. V. B. Analysis of Aromatic Amines in Surface Waters Receiving Wastewater from a Textile Industry by Liquid Chromatographic with Electrochemical Detection. Anal. Lett. 2006, 39 (14), 2671–2685. 10.1080/00032710600824797. DOI

Weiss T.; Angerer J. Simultaneous Determination of Various Aromatic Amines and Metabolites of Aromatic Nitro Compounds in Urine for Low Level Exposure Using Gas Chromatography-Mass Spectrometry. Journal of Chromatography B 2002, 778 (1), 179–192. 10.1016/S0378-4347(01)00542-4. PubMed DOI

Ji H.; Jin Z.; Fenton L.; Slone S. Evaluation of Six Aromatic Amines in the Mainstream Smoke of Commercial Cigars. Chem. Res. Toxicol. 2023, 36 (12), 2001–2009. 10.1021/acs.chemrestox.3c00273. PubMed DOI PMC

Chinthakindi S.; Kannan K. Primary Aromatic Amines in Indoor Dust from 10 Countries and Associated Human Exposure. Environ. Int. 2021, 157, 106840.10.1016/j.envint.2021.106840. PubMed DOI PMC

National Center for Biotechnology Information. o-Toluidine. PubChem CID 7242, 2024. https://pubchem.ncbi.nlm.nih.gov/compound/o-Toluidine (accessed 2024-03-05).

Caroline English J.; Bhat V. S.; Ball G. L.; McLellan C. J. Establishing a Total Allowable Concentration of O-Toluidine in Drinking Water Incorporating Early Lifestage Exposure and Susceptibility. Regul. Toxicol. Pharmacol. 2012, 64 (2), 269–284. 10.1016/j.yrtph.2012.08.011. PubMed DOI

Drzyzga O. Diphenylamine and Derivatives in the Environment: A Review. Chemosphere 2003, 53 (8), 809–818. 10.1016/S0045-6535(03)00613-1. PubMed DOI

Liang B.; Li J.; Du B.; Pan Z.; Liu L.-Y.; Zeng L. E-Waste Recycling Emits Large Quantities of Emerging Aromatic Amines and Organophosphites: A Poorly Recognized Source for Another Two Classes of Synthetic Antioxidants. Environ. Sci. Technol. Lett. 2022, 9 (7), 625–631. 10.1021/acs.estlett.2c00366. DOI

Liu R.; Li Y.; Lin Y.; Ruan T.; Jiang G. Emerging Aromatic Secondary Amine Contaminants and Related Derivatives in Various Dust Matrices in China. Ecotoxicology and Environmental Safety 2019, 170, 657–663. 10.1016/j.ecoenv.2018.12.036. PubMed DOI

Wang W.; Ren S.; Zhang H.; Yu J.; An W.; Hu J.; Yang M. Occurrence of Nine Nitrosamines and Secondary Amines in Source Water and Drinking Water: Potential of Secondary Amines as Nitrosamine Precursors. Water Res. 2011, 45 (16), 4930–4938. 10.1016/j.watres.2011.06.041. PubMed DOI

Ayyangar N. R.; Jadhav G. S.; Joshi S. V.; Srinivasan K. V. The Use of Ortho- Cumidine as a Dyestuff Intermediate: Part 1: Monoazo and Disazo Solvent Dyes. Dyes Pigm. 1987, 8 (4), 301–313. 10.1016/0143-7208(87)85020-9. DOI

Mathew S. M.; Biradar A. V.; Umbarkar S. B.; Dongare M. K. Regioselective Nitration of Cumene to 4-Nitro Cumene Using Nitric Acid over Solid Acid Catalyst. Catal. Commun. 2006, 7 (6), 394–398. 10.1016/j.catcom.2005.12.022. DOI

Barreto P.; Lemes M.; Jimenez J.; Mack E. E.; Henderson J.; Freedman D. L. Evaluation of Strategies to Remediate Mixed Wastes at an Industrial Site in Brazil. Groundwater Monitoring & Remediation 2023, 43 (3), 93–107. 10.1111/gwmr.12607. DOI

Ormad M. P.; Miguel N.; Claver A.; Matesanz J. M.; Ovelleiro J. L. Pesticides Removal in the Process of Drinking Water Production. Chemosphere 2008, 71 (1), 97–106. 10.1016/j.chemosphere.2007.10.006. PubMed DOI

National Center for Biotechnology Information. Michler’s Ketone. PubChem CID 7031, 2024. https://pubchem.ncbi.nlm.nih.gov/compound/Michler_s-ketone (accessed 2024-03-05).

Liu R.; Mabury S. A. Identification of Photoinitiators, Including Novel Phosphine Oxides, and Their Transformation Products in Food Packaging Materials and Indoor Dust in Canada. Environ. Sci. Technol. 2019, 53 (8), 4109–4118. 10.1021/acs.est.9b00045. PubMed DOI

Liu R.; Lin Y.; Hu F.; Liu R.; Ruan T.; Jiang G. Observation of Emerging Photoinitiator Additives in Household Environment and Sewage Sludge in China. Environ. Sci. Technol. 2016, 50 (1), 97–104. 10.1021/acs.est.5b04977. PubMed DOI

Ma H.; Chen W.; Lv M.; Qi X.; Ruan Q.; Pan C.; Guo A. The Inhibitory Mechanism of 2-Amino-3,8-Dimethylimidazo [4,5-f] Quinoxaline (MeIQx) Formation by Ultraviolet-Gallic Acid (UV-GA) during the Oil-Frying Process of Squid. Food Chem. 2023, 418, 135957.10.1016/j.foodchem.2023.135957. PubMed DOI

Ohe T. Quantification of Mutagenic/Carcinogenic Heterocyclic Amines, MeIQx, Trp-P-1, Trp-P-2 and PhIP, Contributing Highly to Genotoxicity of River Water. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 1997, 393 (1), 73–79. 10.1016/S1383-5718(97)00087-9. PubMed DOI

Canales R.; Mariño-Repizo L.; Reta M.; Cerutti S. Multi-Response Optimization of a Green Solid-Phase Extraction for the Analysis of Heterocyclic Aromatic Amines in Environmental Samples. Anal. Methods 2020, 12 (11), 1504–1513. 10.1039/C9AY02712B. DOI

Freeman H. S. Aromatic Amines: Use in Azo Dye Chemistry. Front Biosci (Landmark Ed) 2013, 18 (1), 145–164. 10.2741/4093. PubMed DOI

Pinheiro H. M.; Touraud E.; Thomas O. Aromatic Amines from Azo Dye Reduction: Status Review with Emphasis on Direct UV Spectrophotometric Detection in Textile Industry Wastewaters. Dyes Pigm. 2004, 61 (2), 121–139. 10.1016/j.dyepig.2003.10.009. DOI

Crettaz S.; Kämpfer P.; Brüschweiler B. J.; Nussbaumer S.; Deflorin O. Survey on Hazardous Non-Regulated Aromatic Amines as Cleavage Products of Azo Dyes Found in Clothing Textiles on the Swiss Market. Journal of Consumer Protection and Food Safety 2020, 15 (1), 49–61. 10.1007/s00003-019-01245-1. DOI

Brüschweiler B. J.; Merlot C. Azo Dyes in Clothing Textiles Can Be Cleaved into a Series of Mutagenic Aromatic Amines Which Are Not Regulated Yet. Regul. Toxicol. Pharmacol. 2017, 88, 214–226. 10.1016/j.yrtph.2017.06.012. PubMed DOI

World Bank . How Much Do Our Wardrobes Cost to the Environment? 2019. https://www.worldbank.org/en/news/feature/2019/09/23/costo-moda-medio-ambiente (accessed 2024-03-05)

Pearce C. I.; Lloyd J. R.; Guthrie J. T. The Removal of Colour from Textile Wastewater Using Whole Bacterial Cells: A Review. Dyes Pigm. 2003, 58 (3), 179–196. 10.1016/S0143-7208(03)00064-0. DOI

Ekici P.; Leupold G.; Parlar H. Degradability of Selected Azo Dye Metabolites in Activated Sludge Systems. Chemosphere 2001, 44 (4), 721–728. 10.1016/S0045-6535(00)00345-3. PubMed DOI

Solís M.; Solís A.; Pérez H. I.; Manjarrez N.; Flores M. Microbial Decolouration of Azo Dyes: A Review. Process Biochemistry 2012, 47 (12), 1723–1748. 10.1016/j.procbio.2012.08.014. DOI

de Aragão Umbuzeiro G.; Roubicek D. A.; Rech C. M.; Sato M. I. Z.; Claxton L. D. Investigating the Sources of the Mutagenic Activity Found in a River Using the Salmonella Assay and Different Water Extraction Procedures. Chemosphere 2004, 54 (11), 1589–1597. 10.1016/j.chemosphere.2003.09.009. PubMed DOI

Platzek T.; Lang C.; Grohmann G.; Gi U.-S.; Baltes W. Formation of a Carcinogenic Aromatic Amine from an Azo Dye by Human Skin Bacteria in Vitro. Hum Exp Toxicol 1999, 18 (9), 552–559. 10.1191/096032799678845061. PubMed DOI

Weber E. J.; Adams R. L. Chemical- and Sediment-Mediated Reduction of the Azo Dye Disperse Blue 79. Environ. Sci. Technol. 1995, 29 (5), 1163–1170. 10.1021/es00005a005. PubMed DOI

Maguire R. J. Occurrence and Persistence of Dyes in a Canadian River. Water Sci. Technol. 1992, 25 (11), 270–270. 10.2166/wst.1992.0301. DOI

Balakrishnan V. K.; Shirin S.; Aman A. M.; de Solla S. R.; Mathieu-Denoncourt J.; Langlois V. S. Genotoxic and Carcinogenic Products Arising from Reductive Transformations of the Azo Dye, Disperse Yellow 7. Chemosphere 2016, 146, 206–215. 10.1016/j.chemosphere.2015.11.119. PubMed DOI

Yavuz O.; Valzacchi S.; Hoekstra E.; Simoneau C. Determination of Primary Aromatic Amines in Cold Water Extract of Coloured Paper Napkin Samples by Liquid Chromatography-Tandem Mass Spectrometry. Food Additives & Contaminants: Part A 2016, 33 (6), 1072–1079. 10.1080/19440049.2016.1184493. PubMed DOI PMC

Luongo G.; Iadaresta F.; Moccia E.; Östman C.; Crescenzi C. Determination of Aniline and Quinoline Compounds in Textiles. Journal of Chromatography A 2016, 1471, 11–18. 10.1016/j.chroma.2016.09.068. PubMed DOI

Brüschweiler B. J.; Küng S.; Bürgi D.; Muralt L.; Nyfeler E. Identification of Non-Regulated Aromatic Amines of Toxicological Concern Which Can Be Cleaved from Azo Dyes Used in Clothing Textiles. Regul. Toxicol. Pharmacol. 2014, 69 (2), 263–272. 10.1016/j.yrtph.2014.04.011. PubMed DOI

Souza M. C. O.; González N.; Herrero M.; Marquès M.; Rovira J.; Nadal M.; Barbosa F.; Domingo J. L. Screening of Regulated Aromatic Amines in Clothing Marketed in Brazil and Spain: Assessment of Human Health Risks. Environmental Research 2023, 221, 115264.10.1016/j.envres.2023.115264. PubMed DOI

Pahade P.; Bose D.; Peris-Vicente J.; Goberna-Bravo M. Á.; Albiol Chiva J.; Esteve Romero J.; Carda-Broch S.; Durgbanshi A. Screening of Some Banned Aromatic Amines in Textile Products from Indian Bandhani and Gamthi Fabric and in Human Sweat Using Micellar Liquid Chromatography. Microchemical Journal 2021, 165, 106134.10.1016/j.microc.2021.106134. DOI

Joint Research Centre, Institute for Health and Consumer Protection; Senaldi C.; Piccinini P.; Buriova E.. European Survey on the Presence of Banned Azodyes in Textiles; Publications Office, 2008.

Some Aromatic Amines, Organic Dyes, and Related Exposures; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 99; International Agency for Research on Cancer: Lyon, France, 2010 PubMed PMC

Akyüz M.; Ata Ş. Determination of Aromatic Amines in Hair Dye and Henna Samples by Ion-Pair Extraction and Gas Chromatography-Mass Spectrometry. J. Pharm. Biomed. Anal. 2008, 47 (1), 68–80. 10.1016/j.jpba.2007.12.011. PubMed DOI

He L.; Michailidou F.; Gahlon H. L.; Zeng W. Hair Dye Ingredients and Potential Health Risks from Exposure to Hair Dyeing. Chem. Res. Toxicol. 2022, 35 (6), 901–915. 10.1021/acs.chemrestox.1c00427. PubMed DOI PMC

Gago-Dominguez M.; Castelao J. E.; Yuan J.-M.; Yu M. C.; Ross R. K. Use of Permanent Hair Dyes and Bladder-Cancer Risk. Int. J. Cancer 2001, 91 (4), 575–579. 10.1002/1097-0215(200002)9999:9999<::AID-IJC1092>3.0.CO;2-S. PubMed DOI

Skoczyńska E.; Leonards P. E. G.; Llompart M.; de Boer J. Analysis of Recycled Rubber: Development of an Analytical Method and Determination of Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Compounds in Rubber Matrices. Chemosphere 2021, 276, 130076.10.1016/j.chemosphere.2021.130076. PubMed DOI

Baensch-Baltruschat B.; Kocher B.; Stock F.; Reifferscheid G. Tyre and Road Wear Particles (TRWP) - A Review of Generation, Properties, Emissions, Human Health Risk, Ecotoxicity, and Fate in the Environment. Science of The Total Environment 2020, 733, 137823.10.1016/j.scitotenv.2020.137823. PubMed DOI

Xu J.; Hao Y.; Yang Z.; Li W.; Xie W.; Huang Y.; Wang D.; He Y.; Liang Y.; Matsiko J.; Wang P. Rubber Antioxidants and Their Transformation Products: Environmental Occurrence and Potential Impact. Int. J. Environ. Res. Public Health 2022, 19 (21), 14595.10.3390/ijerph192114595. PubMed DOI PMC

Vermeulen R.; Bos R. P.; de Hartog J.; van Drooge H.; Kromhout H. Mutagenic Profile of Rubber Dust and Fume Exposure in Two Rubber Tire Companies. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2000, 468 (2), 165–171. 10.1016/S1383-5718(00)00046-2. PubMed DOI

Tian Z.; Zhao H.; Peter K. T.; Gonzalez M.; Wetzel J.; Wu C.; Hu X.; Prat J.; Mudrock E.; Hettinger R.; Cortina A. E.; Biswas R. G.; Kock F. V. C.; Soong R.; Jenne A.; Du B.; Hou F.; He H.; Lundeen R.; Gilbreath A.; Sutton R.; Scholz N. L.; Davis J. W.; Dodd M. C.; Simpson A.; McIntyre J. K.; Kolodziej E. P. A Ubiquitous Tire Rubber-Derived Chemical Induces Acute Mortality in Coho Salmon. Science 2021, 371 (6525), 185–189. 10.1126/science.abd6951. PubMed DOI

Tian Z.; Gonzalez M.; Rideout C. A.; Zhao H. N.; Hu X.; Wetzel J.; Mudrock E.; James C. A.; McIntyre J. K.; Kolodziej E. P. 6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard. Environ. Sci. Technol. Lett. 2022, 9 (2), 140–146. 10.1021/acs.estlett.1c00910. DOI

Rauert C.; Charlton N.; Okoffo E. D.; Stanton R. S.; Agua A. R.; Pirrung M. C.; Thomas K. V. Concentrations of Tire Additive Chemicals and Tire Road Wear Particles in an Australian Urban Tributary. Environ. Sci. Technol. 2022, 56 (4), 2421–2431. 10.1021/acs.est.1c07451. PubMed DOI

Rauert C.; Vardy S.; Daniell B.; Charlton N.; Thomas K. V. Tyre Additive Chemicals, Tyre Road Wear Particles and High Production Polymers in Surface Water at 5 Urban Centres in Queensland, Australia. Science of The Total Environment 2022, 852, 158468.10.1016/j.scitotenv.2022.158468. PubMed DOI

Johannessen C.; Helm P.; Metcalfe C. D. Detection of Selected Tire Wear Compounds in Urban Receiving Waters. Environ. Pollut. 2021, 287, 117659.10.1016/j.envpol.2021.117659. PubMed DOI

Zhang H.-Y.; Huang Z.; Liu Y.-H.; Hu L.-X.; He L.-Y.; Liu Y.-S.; Zhao J.-L.; Ying G.-G. Occurrence and Risks of 23 Tire Additives and Their Transformation Products in an Urban Water System. Environ. Int. 2023, 171, 107715.10.1016/j.envint.2022.107715. PubMed DOI

Zhang R.; Zhao S.; Liu X.; Tian L.; Mo Y.; Yi X.; Liu S.; Liu J.; Li J.; Zhang G. Aquatic Environmental Fates and Risks of Benzotriazoles, Benzothiazoles, and p-Phenylenediamines in a Catchment Providing Water to a Megacity of China. Environmental Research 2023, 216, 114721.10.1016/j.envres.2022.114721. PubMed DOI

Seiwert B.; Klöckner P.; Wagner S.; Reemtsma T. Source-Related Smart Suspect Screening in the Aqueous Environment: Search for Tire-Derived Persistent and Mobile Trace Organic Contaminants in Surface Waters. Anal. Bioanal. Chem. 2020, 412 (20), 4909–4919. 10.1007/s00216-020-02653-1. PubMed DOI PMC

Challis J. K.; Popick H.; Prajapati S.; Harder P.; Giesy J. P.; McPhedran K.; Brinkmann M. Occurrences of Tire Rubber-Derived Contaminants in Cold-Climate Urban Runoff. Environ. Sci. Technol. Lett. 2021, 8 (11), 961–967. 10.1021/acs.estlett.1c00682. DOI

Johannessen C.; Saini A.; Zhang X.; Harner T. Air Monitoring of Tire-Derived Chemicals in Global Megacities Using Passive Samplers. Environ. Pollut. 2022, 314, 120206.10.1016/j.envpol.2022.120206. PubMed DOI

Zhang Y.; Xu C.; Zhang W.; Qi Z.; Song Y.; Zhu L.; Dong C.; Chen J.; Cai Z. P-Phenylenediamine Antioxidants in PM2.5: The Underestimated Urban Air Pollutants. Environ. Sci. Technol. 2022, 56 (11), 6914–6921. 10.1021/acs.est.1c04500. PubMed DOI

Jin R.; Venier M.; Chen Q.; Yang J.; Liu M.; Wu Y. Amino Antioxidants: A Review of Their Environmental Behavior, Human Exposure, and Aquatic Toxicity. Chemosphere 2023, 317, 137913.10.1016/j.chemosphere.2023.137913. PubMed DOI

Ji X.; Liang J.; Wang Y.; Liu X.; Li Y.; Liu Q.; Liu R. Synthetic Antioxidants as Contaminants of Emerging Concern in Indoor Environments: Knowns and Unknowns. Environ. Sci. Technol. 2023, 57 (51), 21550–21557. 10.1021/acs.est.3c06487. PubMed DOI

Smith C. J.; Dooly G. L.; Moldoveanu S. C. New Technique Using Solid-Phase Extraction for the Analysis of Aromatic Amines in Mainstream Cigarette Smoke. Journal of Chromatography A 2003, 991 (1), 99–107. 10.1016/S0021-9673(03)00205-X. PubMed DOI

Stabbert R.; Schäfer K.-H.; Biefel C.; Rustemeier K. Analysis of Aromatic Amines in Cigarette Smoke. Rapid Commun. Mass Spectrom. 2003, 17 (18), 2125–2132. 10.1002/rcm.1161. PubMed DOI

Adams J. D.; O’Mara-Adams K. J.; Hoffmann D. Toxic and Carcinogenic Agents in Undiluted Mainstream Smoke and Sidestream Smoke of Different Types of Cigarettes. Carcinogenesis 1987, 8 (5), 729–731. 10.1093/carcin/8.5.729. PubMed DOI

Riedel K.; Scherer G.; Engl J.; Hagedorn H.-W.; Tricker A. R. Determination of Three Carcinogenic Aromatic Amines in Urine of Smokers and Nonsmokers. Journal of Analytical Toxicology 2006, 30 (3), 187–195. 10.1093/jat/30.3.187. PubMed DOI

Grimmer G.; Dettbarn G.; Seidel A.; Jacob J. Detection of Carcinogenic Aromatic Amines in the Urine of Non-Smokers. Science of The Total Environment 2000, 247 (1), 81–90. 10.1016/S0048-9697(99)00471-4. PubMed DOI

Lucaire V.; Schwartz J.-J.; Delhomme O.; Ocampo-Torres R.; Millet M. A Sensitive Method Using SPME Pre-Concentration for the Quantification of Aromatic Amines in Indoor Air. Anal. Bioanal. Chem. 2018, 410 (7), 1955–1963. 10.1007/s00216-018-0862-8. PubMed DOI

Poindexter E. H.; Carpenter R. D. The Isolation of Harmane and Norharmane from Tobacco and Cigarette Smoke. Phytochemistry 1962, 1 (3), 215–221. 10.1016/S0031-9422(00)82825-3. DOI

Sugimura T.; Wakabayashi K.; Nakagama H.; Nagao M. Heterocyclic Amines: Mutagens/Carcinogens Produced during Cooking of Meat and Fish. Cancer Science 2004, 95 (4), 290–299. 10.1111/j.1349-7006.2004.tb03205.x. PubMed DOI PMC

Alaejos M. S.; Afonso A. M. Factors That Affect the Content of Heterocyclic Aromatic Amines in Foods. Comprehensive Reviews in Food Science and Food Safety 2011, 10 (2), 52–108. 10.1111/j.1541-4337.2010.00141.x. DOI

Turesky R. J. Formation and Biochemistry of Carcinogenic Heterocyclic Aromatic Amines in Cooked Meats. Toxicol. Lett. 2007, 168 (3), 219–227. 10.1016/j.toxlet.2006.10.018. PubMed DOI

Gibis M.; Kruwinnus M.; Weiss J. Impact of Different Pan-Frying Conditions on the Formation of Heterocyclic Aromatic Amines and Sensory Quality in Fried Bacon. Food Chem. 2015, 168, 383–389. 10.1016/j.foodchem.2014.07.074. PubMed DOI

Xu Y.; Li H.; Liang J.; Ma J.; Yang J.; Zhao X.; Zhao W.; Bai W.; Zeng X.; Dong H. High-Throughput Quantification of Eighteen Heterocyclic Aromatic Amines in Roasted and Pan-Fried Meat on the Basis of High Performance Liquid Chromatography-Quadrupole-Orbitrap High Resolution Mass Spectrometry. Food Chem. 2021, 361, 130147.10.1016/j.foodchem.2021.130147. PubMed DOI

Yang D.; He Z.; Gao D.; Qin F.; Deng S.; Wang P.; Xu X.; Chen J.; Zeng M. Effects of Smoking or Baking Procedures during Sausage Processing on the Formation of Heterocyclic Amines Measured Using UPLC-MS/MS. Food Chem. 2019, 276, 195–201. 10.1016/j.foodchem.2018.09.160. PubMed DOI

Hasnol N. D. S.; Jinap S.; Sanny M. Effect of Different Types of Sugars in a Marinating Formulation on the Formation of Heterocyclic Amines in Grilled Chicken. Food Chem. 2014, 145, 514–521. 10.1016/j.foodchem.2013.08.086. PubMed DOI

Zhang L.; Du H.; Zhang P.; Kong B.; Liu Q. Heterocyclic Aromatic Amine Concentrations and Quality Characteristics of Traditional Smoked and Roasted Poultry Products on the Northern Chinese Market. Food Chem. Toxicol. 2020, 135, 110931.10.1016/j.fct.2019.110931. PubMed DOI

Yan Y.; Zhou Y.; Huang J.; Wan X.; Zeng M.; Chen J.; Li W.; Jiang J. Influence of Soybean Isolate on the Formation of Heterocyclic Aromatic Amines in Roasted Pork and Its Possible Mechanism. Food Chem. 2022, 369, 130978.10.1016/j.foodchem.2021.130978. PubMed DOI

Li Y.; Quan W.; Wang J.; He Z.; Qin F.; Wang Z.; Zeng M.; Chen J. Effects of Ten Vegetable Oils on Heterocyclic Amine Profiles in Roasted Beef Patties Using UPLC-MS/MS Combined with Principal Component Analysis. Food Chem. 2021, 347, 128996.10.1016/j.foodchem.2020.128996. PubMed DOI

Mattarozzi M.; Lambertini F.; Suman M.; Careri M. Liquid Chromatography-Full Scan-High Resolution Mass Spectrometry-Based Method towards the Comprehensive Analysis of Migration of Primary Aromatic Amines from Food Packaging. Journal of Chromatography A 2013, 1320, 96–102. 10.1016/j.chroma.2013.10.063. PubMed DOI

Hailong X.; Fen Q.; Ying X.; Jianhong P.; Haiyun T.; Hongqing W.; Saijun L.; Jichun H. A Rapid and Sensitive Method for the Detection of Aromatic Amines in Cosmetics. Journal of Chromatographic Science 2014, 52 (2), 115–119. 10.1093/chromsci/bms254. PubMed DOI

Perez M. Â. F.; Daniel D.; Padula M.; do Lago C. L.; Bottoli C. B. G. Determination of Primary Aromatic Amines from Cooking Utensils by Capillary Electrophoresis-Tandem Mass Spectrometry. Food Chem. 2021, 362, 129902.10.1016/j.foodchem.2021.129902. PubMed DOI

Trier X.; Okholm B.; Foverskov A.; Binderup M.-L.; Petersen J. H. Primary Aromatic Amines (PAAs) in Black Nylon and Other Food-Contact Materials, 2004–2009. Food Additives & Contaminants: Part A 2010, 27 (9), 1325–1335. 10.1080/19440049.2010.487500. PubMed DOI

Koutros S.; Lynch C. F.; Ma X.; Lee W. J.; Hoppin J. A.; Christensen C. H.; Andreotti G.; Freeman L. B.; Rusiecki J. A.; Hou L.; Sandler D. P.; Alavanja M. C. R. Heterocyclic Aromatic Amine Pesticide Use and Human Cancer Risk: Results from the U.S. Agricultural Health Study. Int. J. Cancer 2009, 124 (5), 1206–1212. 10.1002/ijc.24020. PubMed DOI PMC

Diesel and Gasoline Engine Exhausts and Some Nitroarenes; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 105; International Agency for Research on Cancer: Lyon, France, 2014. PubMed PMC

Seidel A.; Dahmann D.; Krekeler H.; Jacob J. Biomonitoring of Polycyclic Aromatic Compounds in the Urine of Mining Workers Occupationally Exposed to Diesel Exhaust1 1Following a Presentation given as Part of the International Congress on Environmental Health and the 4th Annual Meeting of the International Society of Environmental Medicine (ISEM), 1 - 4 October, 2000, Hannover, Germany. International Journal of Hygiene and Environmental Health 2002, 204 (5), 333–338. 10.1078/1438-4639-00116. PubMed DOI

Osano O.; Admiraal W.; Otieno D. Developmental Disorders in Embryos of the Frog Xenopus Laevis Induced by Chloroacetanilide Herbicides and Their Degradation Products. Environ. Toxicol. Chem. 2002, 21 (2), 375–379. 10.1002/etc.5620210221. PubMed DOI

Díaz T. G.; Acedo M. I.; de la Peña A. M.; Peña M. S.; Salinas F. Determination of 1-Naphthylamine and the Related Pesticides, Naptalam and Antu, in River-Water by High-Performance Liquid Chromatography. Application to the Study of the Degradation Processes of Naptalam. Analyst 1994, 119 (6), 1151–1155. 10.1039/AN9941901151. DOI

European Chemicals Bureau . European Union Risk Assessment Report - 3,4-Dichloroaniline; 3rd Priority List, Vol 65; Office for Official Publications of the European Communities: Luxembourg, 2006. https://echa.europa.eu/documents/10162/b41f2253-824c-48f8-b494-df54bd901e6a (accessed 2024-03-05).

Carena L.; Fabbri D.; Passananti M.; Minella M.; Pazzi M.; Vione D. The Role of Direct Photolysis in the Photodegradation of the Herbicide Bentazone in Natural Surface Waters. Chemosphere 2020, 246, 125705.10.1016/j.chemosphere.2019.125705. PubMed DOI

Hoffmann G. R.; Fuchs R. P. P. Mechanisms of Frameshift Mutations: Insight from Aromatic Amines. Chem. Res. Toxicol. 1997, 10 (4), 347–359. 10.1021/tx960128n. PubMed DOI

Green M. D.; Tephly T. R. Glucuronidation of Amine Substrates by Purified and Expressed UDP-Glucuronosyltransferase Proteins. Drug Metab. Dispos. 1998, 26 (9), 860–867. PubMed

Turesky R. J.; Le Marchand L. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines. Chem. Res. Toxicol. 2011, 24 (8), 1169–1214. 10.1021/tx200135s. PubMed DOI PMC

Borosky G. L. Carcinogenic Carbocyclic and Heterocyclic Aromatic Amines: A DFT Study Concerning Their Mutagenic Potency. Journal of Molecular Graphics and Modelling 2008, 27 (4), 459–465. 10.1016/j.jmgm.2008.08.002. PubMed DOI

Bellamri M.; Walmsley S. J.; Turesky R. J. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Humans. Genes and Environment 2021, 43 (1), 29.10.1186/s41021-021-00200-7. PubMed DOI PMC

Poupko J. M.; Hearn W. L.; Radomski J. L. N-Glucuronidation of N-Hydroxy Aromatic Amines: A Mechanism for Their Transport and Bladder-Specific Carcinogenicity. Toxicol. Appl. Pharmacol. 1979, 50 (3), 479–484. 10.1016/0041-008X(79)90401-0. PubMed DOI

Augustsson K.; Skog K.; Jägerstad M.; Dickman P. W.; Steineck G. Dietary Heterocyclic Amines and Cancer of the Colon, Rectum, Bladder, and Kidney: A Population-Based Study. Lancet 1999, 353 (9154), 703–707. 10.1016/S0140-6736(98)06099-1. PubMed DOI

Dietrich H. G.; Golka K. Bladder Tumors and Aromatic Amines - Historical Milestones from Ludwig Rehn to Wilhelm Hueper. Front Biosci (Elite Ed) 2012, 4 (1), 279–288. 10.2741/e375. PubMed DOI

Le Marchand L.; Hankin J. H.; Pierce L. M.; Sinha R.; Nerurkar P. V.; Franke A. A.; Wilkens L. R.; Kolonel L. N.; Donlon T.; Seifried A.; Custer L. J.; Lum-Jones A.; Chang W. Well-Done Red Meat, Metabolic Phenotypes and Colorectal Cancer in Hawaii. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2002, 506–507, 205–214. 10.1016/S0027-5107(02)00167-7. PubMed DOI

Reddy Ramireddy V. S.; Kurakula R.; Velayudhaperumal Chellam P.; James A.; van Hullebusch E. D. Systematic Computational Toxicity Analysis of the Ozonolytic Degraded Compounds of Azo Dyes: Quantitative Structure-Activity Relationship (QSAR) and Adverse Outcome Pathway (AOP) Based Approach. Environmental Research 2023, 231, 116142.10.1016/j.envres.2023.116142. PubMed DOI

Zhang H.; Wang C.; Guo F.; Jin L.; Song R.; Yang F.; Ji L.; Yu H. In Silico Simulation of Cytochrome P450-Mediated Metabolism of Aromatic Amines: A Case Study of N-Hydroxylation. Ecotoxicology and Environmental Safety 2022, 237, 113544.10.1016/j.ecoenv.2022.113544. PubMed DOI

Han J.; Yang D.; Hall D. R.; Liu J.; Sun J.; Gu W.; Tang S.; Alharbi H. A.; Jones P. D.; Krause H. M.; Peng H. Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish (Danio Rerio) Is Prone to Aromatic Substituent Changes. Environ. Sci. Technol. 2020, 54 (7), 4421–4431. 10.1021/acs.est.9b07178. PubMed DOI

European Commission . Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006; Official Journal of the European Union, 2023. http://data.europa.eu/eli/reg/2008/1272/oj.

European Commission . Regulation (EC) 1907/2006 of the European Parliament and of the Council of 18 December 2006; Official Journal of the European Union, 2006, 396–849. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:396:0001:0849:EN:PDF.

ECHA . Endocrine Disruptor Assessment List. https://echa.europa.eu/ed-assessment (accessed 2023-04-10).

Angeles L. F.; Aga D. S. Catching the Elusive Persistent and Mobile Organic Compounds: Novel Sample Preparation and Advanced Analytical Techniques. Trends in Environmental Analytical Chemistry 2020, 25, e0007810.1016/j.teac.2019.e00078. DOI

Arimoto S.; Negishi T.; Hayatsu H. Inhibitory Effect of Hemin on the Mutagenic Activities of Carcinogens. Cancer Letters 1980, 11 (1), 29–33. 10.1016/0304-3835(80)90125-1. PubMed DOI

Arimoto S.; Ohara Y.; Namba T.; Negishi T.; Hayatsu H. Inhibition of the Mutagenicity of Amino Acid Pyrolysis Products by Hemin and Other Biological Pyrrole Pigments. Biochem. Biophys. Res. Commun. 1980, 92 (2), 662–668. 10.1016/0006-291X(80)90384-8. PubMed DOI

Hayatsu H. [Pigment molecules linked to polymer support: blue rayon, blue chitin, and green chitosan-synthesis and applications]. Yakugaku Zasshi 2000, 120 (6), 534–547. 10.1248/yakushi1947.120.6_534. PubMed DOI

Hayatsu H.; Oka T.; Wakata A.; Ohara Y.; Hayatsu T.; Kobayashi H.; Arimoto S. Adsorption of Mutagens to Cotton Bearing Covalently Bound Trisulfo-Copper-Phthalocyanine. Mutation Research Letters 1983, 119 (3), 233–238. 10.1016/0165-7992(83)90166-5. PubMed DOI

Skog K. Blue Cotton, Blue Rayon and Blue Chitin in the Analysis of Heterocyclic Aromatic Amines—a Review. Journal of Chromatography B 2004, 802 (1), 39–44. 10.1016/j.jchromb.2003.11.016. PubMed DOI

Kira S.; Hayatsu H.; Ogata M. Detection of Mutagenicity in Mussels and Their Ambient Water. Bull. Environ. Contam. Toxicol. 1989, 43 (4), 583–589. 10.1007/BF01701939. PubMed DOI

Manabe S.; Yanagisawa H.; Guo S.-B.; Abe S.; Ishikawa S.; Wada O. Detection of Trp-P-1 and Trp-P-2, Carcinogenic Tryptophan Pyrolysis Products, in Dialysis Fluid of Patients with Uremia. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1987, 179 (1), 33–40. 10.1016/0027-5107(87)90038-8. PubMed DOI

Manabe S.; Yanagisawa H.; Ishikawa S.; Kitagawa Y.; Kanai Y.; Wada O. Accumulation of 2-Amino-6-Methyldipyrido[1,2-a:3′,2′-d]Imidazole and 2-Aminodipyrido[1,2-a:3′,2′-d]Imidazole, Carcinogenic Glutamic Acid Pyrolysis Products, in Plasma of Patients with Uremia1. Cancer Res. 1987, 47 (22), 6150–6155. PubMed

Manabe S.; Yanagisawa H.; Kanai Y.; Wada O. Presence of Carcinogenic Glutamic-Acid Pyrolysis Products in Human Cataractous Lens. Ophthalmic Research 1988, 20 (1), 20–26. 10.1159/000266251. PubMed DOI

Yamashita M.; Wakabayashi K.; Nagao M.; Sato S.; Yamaizumi Z.; Takahashi M.; Kinae N.; Tomita I.; Sugimura T. Detection of 2-Amino-3-Methylimidazo[4,5-f]Quinoline in Cigarette Smoke Condensate. Jpn. J. Cancer Res. 1986, 77 (5), 419–422. PubMed

Sakamoto H.; Hayatsu H. A Simple Method for Monitoring Mutagenicity of River Water. Mutagens in Yodo River System, Kyoto-Osaka. Bull. Environ. Contam. Toxicol. 1990, 44 (4), 521–528. 10.1007/BF01700870. PubMed DOI

Oguri A.; Shiozawa T.; Terao Y.; Nukaya H.; Yamashita J.; Ohe T.; Sawanishi H.; Katsuhara T.; Sugimura T.; Wakabayashi K. Identification of a 2-Phenylbenzotriazole (PBTA)-Type Mutagen, PBTA-2, in Water from the Nishitakase River in Kyoto. Chem. Res. Toxicol. 1998, 11 (10), 1195–1200. 10.1021/tx980133m. PubMed DOI

Shiozawa T.; Tada A.; Nukaya H.; Watanabe T.; Takahashi Y.; Asanoma M.; Ohe T.; Sawanishi H.; Katsuhara T.; Sugimura T.; Wakabayashi K.; Terao Y. Isolation and Identification of a New 2-Phenylbenzotriazole-Type Mutagen (PBTA-3) in the Nikko River in Aichi, Japan. Chem. Res. Toxicol. 2000, 13 (7), 535–540. 10.1021/tx0000264. PubMed DOI

Nukaya H.; Shiozawa T.; Tada A.; Terao Y.; Ohe T.; Watanabe T.; Asanoma M.; Sawanishi H.; Katsuhara T.; Sugimura T.; Wakabayashi K. Identification of 2-[2-(Acetylamino)-4-Amino-5-Methoxyphenyl]-5-Amino-7-Bromo-4-Chloro-2H-Benzotriazole (PBTA-4) as a Potent Mutagen in River Water in Kyoto and Aichi Prefectures, Japan. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2001, 492 (1), 73–80. 10.1016/S1383-5718(01)00147-4. PubMed DOI

Nukaya H.; Yamashita J.; Tsuji K.; Terao Y.; Ohe T.; Sawanishi H.; Katsuhara T.; Kiyokawa K.; Tezuka M.; Oguri A.; Sugimura T.; Wakabayashi K. Isolation and Chemical-Structural Determination of a Novel Aromatic Amine Mutagen in Water from the Nishitakase River in Kyoto. Chem. Res. Toxicol. 1997, 10 (10), 1061–1066. 10.1021/tx9700883. PubMed DOI

Gallampois C. M. J.; Schymanski E. L.; Bataineh M.; Buchinger S.; Krauss M.; Reifferscheid G.; Brack W. Integrated Biological-Chemical Approach for the Isolation and Selection of Polyaromatic Mutagens in Surface Waters. Anal. Bioanal. Chem. 2013, 405 (28), 9101–9112. 10.1007/s00216-013-7349-4. PubMed DOI

Hayatsu H.; Hayatsu T.; Arimoto S.; Sakamoto H. A Short-Column Technique for Concentrating Mutagens/Carcinogens Having Polycyclic Structures. Anal. Biochem. 1996, 235 (2), 185–190. 10.1006/abio.1996.0110. PubMed DOI

Sakamoto H.; Ohe T.; Hayatsu T.; Hayatsu H. Evaluation of Blue-Chitin Column, Blue-Rayon Hanging, and XAD-Resin Column Techniques for Concentrating Mutagens from Two Japanese Rivers. Mutation Research/Genetic Toxicology 1996, 371 (1), 79–85. 10.1016/S0165-1218(96)90097-X. PubMed DOI

Kummrow F.; Rech C. M.; Coimbrão C. A.; Roubicek D. A.; Umbuzeiro G. de A. Comparison of the Mutagenic Activity of XAD4 and Blue Rayon Extracts of Surface Water and Related Drinking Water Samples. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2003, 541 (1), 103–113. 10.1016/j.mrgentox.2003.07.011. PubMed DOI

Sarafraz-Yazdi A.; Yekkebashi A. Development of a Poly(Ethylene Glycol)-Graphene Oxide Sol-Gel Coating for Solid-Phase Microextraction of Aromatic Amines in Water Samples with a Gas Chromatography-Flame Ionization Detector Method. New J. Chem. 2015, 39 (2), 1287–1294. 10.1039/C4NJ01689K. DOI

Vainiotalo S.; Matveinen K.; Reunanen A. GC/MS Determination of the Mutagenic Heterocyclic Amines MeIQx and DiMeIQx in Cooking Fumes. Fresenius' J. Anal. Chem. 1993, 345 (6), 462–466. 10.1007/BF00325627. DOI

Poormohammadi A.; Bahrami A.; Ghiasvand A.; Shahna F. G.; Farhadian M. Application of Needle Trap Device Packed with Amberlite XAD-2 Resin Prepared by Sol-Gel Method for Reproducible Sampling of Aromatic Amines in Air. Microchemical Journal 2018, 143, 127–132. 10.1016/j.microc.2018.07.037. DOI

Palmiotto G.; Pieraccini G.; Moneti G.; Dolara P. Determination of the Levels of Aromatic Amines in Indoor and Outdoor Air in Italy. Chemosphere 2001, 43 (3), 355–361. 10.1016/S0045-6535(00)00109-0. PubMed DOI

Chinthakindi S.; Zhu Q.; Liao C.; Kannan K. Profiles of Primary Aromatic Amines, Nicotine, and Cotinine in Indoor Dust and Associated Human Exposure in China. Sci. Total Environ. 2022, 806, 151395.10.1016/j.scitotenv.2021.151395. PubMed DOI PMC

To W. M.; Lau Y. K.; Yeung L. L. Emission of Carcinogenic Components from Commercial Kitchens in Hong Kong. Indoor and Built Environment 2007, 16 (1), 29–38. 10.1177/1420326X06074500. DOI

Wu Y.; Venier M.; Hites R. A. Broad Exposure of the North American Environment to Phenolic and Amino Antioxidants and to Ultraviolet Filters. Environ. Sci. Technol. 2020, 54 (15), 9345–9355. 10.1021/acs.est.0c04114. PubMed DOI

Tan H.; Yang L.; Huang Y.; Tao L.; Chen D. Novel” Synthetic Antioxidants in House Dust from Multiple Locations in the Asia-Pacific Region and the United States. Environ. Sci. Technol. 2021, 55 (13), 8675–8682. 10.1021/acs.est.1c00195. PubMed DOI

Olubusoye B. S.; Cizdziel J. V.; Bee M.; Moore M. T.; Pineda M.; Yargeau V.; Bennett E. R. Toxic Tire Wear Compounds (6PPD-Q and 4-ADPA) Detected in Airborne Particulate Matter Along a Highway in Mississippi, USA. Bull. Environ. Contam. Toxicol. 2023, 111 (6), 68.10.1007/s00128-023-03820-7. PubMed DOI

Deng C.; Huang J.; Qi Y.; Chen D.; Huang W. Distribution Patterns of Rubber Tire-Related Chemicals with Particle Size in Road and Indoor Parking Lot Dust. Science of The Total Environment 2022, 844, 157144.10.1016/j.scitotenv.2022.157144. PubMed DOI

Zhou L. J.; Rong Z. Y.; Gu W.; Fan D. L.; Liu J. N.; Shi L. L.; Xu Y. H.; Liu Z. Y. Integrated Fate Assessment of Aromatic Amines in Aerobic Sewage Treatment Plants. Environmental Monitoring and Assessment 2020, 192 (5), 278.10.1007/s10661-020-8111-y. PubMed DOI PMC

Sun L.; Mo Y.; Zhang L. A Mini Review on Bio-Electrochemical Systems for the Treatment of Azo Dye Wastewater: State-of-the-Art and Future Prospects. Chemosphere 2022, 294, 133801.10.1016/j.chemosphere.2022.133801. PubMed DOI

Houk V. S. The Genotoxicity of Industrial Wastes and Effluents: A Review. Mutation Research/Reviews in Genetic Toxicology 1992, 277 (2), 91–138. 10.1016/0165-1110(92)90001-P. PubMed DOI

Jolibois B.; Guerbet M. Hospital Wastewater Genotoxicity. Annals of Occupational Hygiene 2006, 50 (2), 189–196. 10.1093/annhyg/mei051. PubMed DOI

Hug C.; Sievers M.; Ottermanns R.; Hollert H.; Brack W.; Krauss M. Linking Mutagenic Activity to Micropollutant Concentrations in Wastewater Samples by Partial Least Square Regression and Subsequent Identification of Variables. Chemosphere 2015, 138, 176–182. 10.1016/j.chemosphere.2015.05.072. PubMed DOI

Batista N. J. C.; de Carvalho Melo Cavalcante A. A.; de Oliveira M. G.; Medeiros E. C. N.; Machado J. L.; Evangelista S. R.; Dias J. F.; dos Santos C. E. I.; Duarte A.; da Silva F. R.; da Silva J. Genotoxic and Mutagenic Evaluation of Water Samples from a River under the Influence of Different Anthropogenic Activities. Chemosphere 2016, 164, 134–141. 10.1016/j.chemosphere.2016.08.091. PubMed DOI

Vacchi F. I.; Vendemiatti J. A. S.; Brosselin V.; Ferreira da Silva B.; B. Zanoni M. V.; DeMeo M.; Bony S.; Devaux A.; Umbuzeiro G. A. Combining Different Assays and Chemical Analysis to Characterize the Genotoxicity of Waters Impacted by Textile Discharges. Environmental and Molecular Mutagenesis 2016, 57 (7), 559–571. 10.1002/em.22034. PubMed DOI

Liu M.; Lv J.; Qin C.; Zhang H.; Wu L.; Guo W.; Guo C.; Xu J. Chemical Fingerprinting of Organic Micropollutants in Different Industrial Treated Wastewater Effluents and Their Effluent-Receiving River. Science of The Total Environment 2022, 838, 156399.10.1016/j.scitotenv.2022.156399. PubMed DOI

Cao G.; Wang W.; Zhang J.; Wu P.; Qiao H.; Li H.; Huang G.; Yang Z.; Cai Z. Occurrence and Fate of Substituted P-Phenylenediamine-Derived Quinones in Hong Kong Wastewater Treatment Plants. Environ. Sci. Technol. 2023, 57 (41), 15635–15643. 10.1021/acs.est.3c03758. PubMed DOI PMC

White P. A.; Rasmussen J. B. The Genotoxic Hazards of Domestic Wastes in Surface waters1Summary of Material Presented at the Workshop Sources, Effects and Potential Hazards of Genotoxic Complex Mixtures in the Environment Held at the Annual Meeting of the Environmental Mutagen Society, April 20, 1997, Minneapolis, MN.1. Mutation Research/Reviews in Mutation Research 1998, 410 (3), 223–236. 10.1016/S1383-5742(98)00002-7. DOI

Petrie B.; Barden R.; Kasprzyk-Hordern B. A Review on Emerging Contaminants in Wastewaters and the Environment: Current Knowledge, Understudied Areas and Recommendations for Future Monitoring. Water Res. 2015, 72, 3–27. 10.1016/j.watres.2014.08.053. PubMed DOI

Gewurtz S. B.; Teslic S.; Hamilton M. C.; Smyth S. A. Influence of Conjugation on the Fate of Pharmaceuticals and Hormones in Canadian Wastewater Treatment Plants. ACS EST Water 2022, 2 (2), 329–338. 10.1021/acsestwater.1c00376. DOI

Patel M.; Kumar R.; Kishor K.; Mlsna T.; Pittman C. U. Jr.; Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119 (6), 3510–3673. 10.1021/acs.chemrev.8b00299. PubMed DOI

Gates P. M.; Furlong E. T.; Dorsey T. F.; Burkhardt M. R. Determination of Nitroaromatic Explosives and Their Degradation Products in Unsaturated-Zone Water Samples by High-Performance Liquid Chromatography with Photodiode-Array, Mass Spectrometric, and Tandem Mass Spectrometric Detection. TrAC Trends in Analytical Chemistry 1996, 15 (8), 319–325. 10.1016/0165-9936(96)00050-7. DOI

Dorgerloh U.; Hofmann A.; Riedel J.; Becker R. Comparison of Gas- and Liquid Chromatography-Mass Spectrometry for Trace Analysis of Anilines in Groundwater. International Journal of Environmental Analytical Chemistry 2023, 103 (19), 8465–8477. 10.1080/03067319.2021.1987423. DOI

Jurado-Sánchez B.; Ballesteros E.; Gallego M. Occurrence of Aromatic Amines and N-Nitrosamines in the Different Steps of a Drinking Water Treatment Plant. Water Res. 2012, 46 (14), 4543–4555. 10.1016/j.watres.2012.05.039. PubMed DOI

Kußmaul H.; Heganzi M.; Pfeilsticker K. Zur Analytik von Phenylharnstoff-Herbiziden Im Wasser [Analysis of Phenylurea Herbicides in Water]. Vom Wasser 1975, 44, 31–47.

Ohe T.; White P. A.; DeMarini D. M. Mutagenic Characteristics of River Waters Flowing through Large Metropolitan Areas in North America. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2003, 534 (1), 101–112. 10.1016/S1383-5718(02)00243-7. PubMed DOI

Muz M.; Krauss M.; Kutsarova S.; Schulze T.; Brack W. Mutagenicity in Surface Waters: Synergistic Effects of Carboline Alkaloids and Aromatic Amines. Environ. Sci. Technol. 2017, 51 (3), 1830–1839. 10.1021/acs.est.6b05468. PubMed DOI

Kataoka H.; Hayatsu T.; Hietsch G.; Steinkellner H.; Nishioka S.; Narimatsu S.; Knasmüller S.; Hayatsu H. Identification of Mutagenic Heterocyclic Amines (IQ, Trp-P-1 and AαC) in the Water of the Danube River. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2000, 466 (1), 27–35. 10.1016/S1383-5718(99)00235-1. PubMed DOI

Claver A.; Ormad P.; Rodríguez L.; Ovelleiro J. L. Study of the Presence of Pesticides in Surface Waters in the Ebro River Basin (Spain). Chemosphere 2006, 64 (9), 1437–1443. 10.1016/j.chemosphere.2006.02.034. PubMed DOI

Arimoto-Kobayashi S.; Lord G. A.; Hayatsu H. Mutagenicity in the Surface Waters from Rivers in the UK and Japan from 1997 to 2005. Genes and Environment 2007, 29 (2), 67–73. 10.3123/jemsge.29.67. DOI

Ohe T. Quantification of Mutagenic/Carcinogenic Heterocyclic Amines, MeIQx, Trp-P-1, Trp-P-2 and PhIP, Contributing Highly to Genotoxicity of River Water. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 1997, 393 (1), 73–79. 10.1016/S1383-5718(97)00087-9. PubMed DOI

Gosetti F.; Chiuminatto U.; Zampieri D.; Mazzucco E.; Marengo E.; Gennaro M. C. A New On-Line Solid Phase Extraction High Performance Liquid Chromatography Tandem Mass Spectrometry Method to Study the Sun Light Photodegradation of Mono-Chloroanilines in River Water. Journal of Chromatography A 2010, 1217 (20), 3427–3434. 10.1016/j.chroma.2010.02.080. PubMed DOI

Amiri A.; Saadati-Moshtaghin H. R.; Zonoz F. M.; Targhoo A. Preparation and Characterization of Magnetic Wells-Dawson Heteropoly Acid Nanoparticles for Magnetic Solid-Phase Extraction of Aromatic Amines in Water Samples. Journal of Chromatography A 2017, 1483, 64–70. 10.1016/j.chroma.2016.12.083. PubMed DOI

Wu J.; Huang Y.; Huang X. Efficient Trap of Polar Aromatic Amines in Environmental Waters by Electroenhanced Solid Phase Microextraction Based on Porous Monolith Doped with Carboxylic Carbon Nanotubes. Sep. Purif. Technol. 2022, 282, 120067.10.1016/j.seppur.2021.120067. DOI

Zhu J.; Guo R.; Ren F.; Jiang S.; Jin H. Occurrence and Partitioning of P-Phenylenediamine Antioxidants and Their Quinone Derivatives in Water and Sediment. Science of The Total Environment 2024, 914, 170046.10.1016/j.scitotenv.2024.170046. PubMed DOI

Müller L.; Fattore E.; Benfenati E. Determination of Aromatic Amines by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry in Water Samples. Journal of Chromatography A 1997, 791 (1), 221–230. 10.1016/S0021-9673(97)00795-4. DOI

Urbaniak M.; Chinthakindi S.; Martinez A.; Hornbuckle K. C.; Kannan K. Occurrence of Primary Aromatic Amines and Nicotine in Sediments Collected from the United States. Science of The Total Environment 2022, 851, 158102.10.1016/j.scitotenv.2022.158102. PubMed DOI PMC

Lyons C. D.; Katz S.; Bartha R. Mechanisms and Pathways of Aniline Elimination from Aquatic Environments. Appl. Environ. Microbiol. 1984, 48 (3), 491–496. 10.1128/aem.48.3.491-496.1984. PubMed DOI PMC

Stockinger J.; Hinteregger C.; Loidl M.; Ferschl A.; Streichsbier F. Mineralization of 3-Chloro-4-Methylaniline via an Ortho-Cleavage Pathway by Pseudomonas Cepacia Strain CMA1. Appl. Microbiol. Biotechnol. 1992, 38 (3), 421–428. 10.1007/BF00170098. DOI

Razo-Flores E.; Donlon B.; Lettinga G.; Field J. A. Biotransformation and Biodegradation of N-Substituted Aromatics in Methanogenic Granular Sludge. FEMS Microbiology Reviews 1997, 20 (3–4), 525–538. 10.1111/j.1574-6976.1997.tb00335.x. PubMed DOI

Alexander M.; Lustigman B. K. Effect of Chemical Structure on Microbial Degradation of Substituted Benzenes. J. Agric. Food Chem. 1966, 14 (4), 410–413. 10.1021/jf60146a022. DOI

Fábrega J. R.; Jafvert C. T.; Li H.; Lee L. S. Modeling Short-Term Soil-Water Distribution of Aromatic Amines. Environ. Sci. Technol. 1998, 32 (18), 2788–2794. 10.1021/es9802394. DOI

Weber E. J.; Colón D.; Baughman G. L. Sediment-Associated Reactions of Aromatic Amines. 1. Elucidation of Sorption Mechanisms. Environ. Sci. Technol. 2001, 35 (12), 2470–2475. 10.1021/es001759d. PubMed DOI

Di Corcia A.; Costantino A.; Crescenzi C.; Samperi R. Quantification of Phenylurea Herbicides and Their Free and Humic Acid-Associated Metabolites in Natural Waters. Journal of Chromatography A 1999, 852 (2), 465–474. 10.1016/S0021-9673(99)00644-5. PubMed DOI

Koopmans D. J.; Bronk D. A. Photochemical Production of Dissolved Inorganic Nitrogen and Primary Amines from Dissolved Organic Nitrogen in Waters of Two Estuaries and Adjacent Surficial Groundwaters. Aquat. Microb. Ecol. 2002, 26 (3), 295–304. 10.3354/ame026295. DOI

Seiwert B.; Nihemaiti M.; Troussier M.; Weyrauch S.; Reemtsma T. Abiotic Oxidative Transformation of 6-PPD and 6-PPD Quinone from Tires and Occurrence of Their Products in Snow from Urban Roads and in Municipal Wastewater. Water Res. 2022, 212, 118122.10.1016/j.watres.2022.118122. PubMed DOI

Könnecker G.; Boehncke A.; Schmidt S. Ecotoxicological Assessment of P-Chloroaniline - Fate and Effects in Aquatic Systems. Fresenius' Environ. Bull. 2003, 12 (6), 592–595.

Martins M.; Rodrigues-Lima F.; Dairou J.; Lamouri A.; Malagnac F.; Silar P.; Dupret J.-M. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals: Molecular and Functional Studies. J. Biol. Chem. 2009, 284 (28), 18726–18733. 10.1074/jbc.M109.015230. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...