Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_013/0001761
Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_013/0001315
Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/17_043/0009632
Ministry of Education Youth and Sports
857560
European Union
P4P4PM_199228
Swiss National Science Foundation - Switzerland
94883
South Africa National Research Foundation
PubMed
36287909
PubMed Central
PMC9610731
DOI
10.3390/toxics10100629
PII: toxics10100629
Knihovny.cz E-zdroje
- Klíčová slova
- Africa, agriculture, exposure pathway, intake dose, plant protection products, residential exposure, spatial variations, temporal variations,
- Publikační typ
- časopisecké články MeSH
Over the last decades, concern has arisen worldwide about the negative impacts of pesticides on the environment and human health. Exposure via dust ingestion is important for many chemicals but poorly characterized for pesticides, particularly in Africa. We investigated the spatial and temporal variations of 30 pesticides in dust and estimated the human exposure via dust ingestion, which was compared to inhalation and soil ingestion. Indoor dust samples were collected from thirty-eight households and two schools located in two agricultural regions in South Africa and were analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry. We found 10 pesticides in dust, with chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and tebuconazole quantified in >50% of the samples. Over seven days, no significant temporal variations in the dust levels of individual pesticides were found. Significant spatial variations were observed for some pesticides, highlighting the importance of proximity to agricultural fields or of indoor pesticide use. For five out of the nineteen pesticides quantified in dust, air, or soil (i.e., carbendazim, chlorpyrifos, diazinon, diuron and propiconazole), human intake via dust ingestion was important (>10%) compared to inhalation or soil ingestion. Dust ingestion should therefore be considered in future human exposure assessment to pesticides.
Aix Marseille University CNRS LCE 13003 Marseille France
Global Change Research Institute of the Czech Academy of Sciences 603 00 Brno Czech Republic
Institute for Risk Assessment Sciences Utrecht University 3584 Utrecht The Netherlands
RECETOX Faculty of Science Masaryk University 625 00 Brno Czech Republic
Swiss Tropical and Public Health Institute 4002 Basel Switzerland
Zobrazit více v PubMed
FAO FAOSTAT-Pesticides Use/Crops. [(accessed on 10 December 2019)]. Available online: http://www.fao.org/faostat/en/#data/RP/visualize.
Mostafalou S., Abdollahi M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017;91:549–599. doi: 10.1007/s00204-016-1849-x. PubMed DOI
Kim K., Kabir E., Ara S. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017;575:525–535. doi: 10.1016/j.scitotenv.2016.09.009. PubMed DOI
Burke R.D., Todd S.W., Lumsden E., Mullins R.J., Mamczarz J., Fawcett W.P., Gullapalli R.P., Randall W.R., Pereira E.F.R., Albuquerque E.X. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: From clinical findings to preclinical models and potential mechanisms. J. Neurochem. 2017;142:162–177. doi: 10.1111/jnc.14077. PubMed DOI PMC
Tang J., Wang W., Jiang Y., Chu W. Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio) Environ. Pollut. 2021;269:116129. doi: 10.1016/j.envpol.2020.116129. PubMed DOI
Bagchi D., Bagchi M., Hassoun E.A., Stohs S.J. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995;104:129–140. doi: 10.1016/0300-483X(95)03156-A. PubMed DOI
Ledda C., Cannizzaro E., Cinà D., Filetti V., Vitale E., Paravizzini G., Di Naso C., Iavicoli I., Rapisarda V. Oxidative stress and DNA damage in agricultural workers after exposure to pesticides. J. Occup. Med. Toxicol. 2021;16:1. doi: 10.1186/s12995-020-00290-z. PubMed DOI PMC
Désert M., Ravier S., Gille G., Quinapallo A., Armengaud A., Pochet G., Savelli J.L., Wortham H., Quivet E. Spatial and temporal distribution of current-use pesticides in ambient air of Provence-Alpes-Côte-d’Azur Region and Corsica, France. Atmos. Environ. 2018;192:241–256. doi: 10.1016/j.atmosenv.2018.08.054. DOI
Silva V., Mol H.G.J., Zomer P., Tienstra M., Ritsema C.J., Geissen V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019;653:1532–1545. doi: 10.1016/j.scitotenv.2018.10.441. PubMed DOI
Syafrudin M., Kristanti R.A., Yuniarto A., Hadibarata T., Rhee J. Pesticides in Drinking Water—A Review. Int. J. Environ. Res. Public Health. 2021;18:468. doi: 10.3390/ijerph18020468. PubMed DOI PMC
Degrendele C., Okonski K., Melymuk L., Landlová L., Kukučka P., Audy O., Kohoutek J., Čupr P., Klánová J. Pesticides in the atmosphere: A comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides. Atmos. Chem. Phys. 2016;16:1531–1544. doi: 10.5194/acp-16-1531-2016. DOI
Pérez-Indoval R., Rodrigo-Ilarri J., Cassiraga E., Rodrigo-Clavero M.E. Numerical modeling of groundwater pollution by chlorpyrifos, bromacil and terbuthylazine. Application to the buñol-cheste aquifer (spain) Int. J. Environ. Res. Public Health. 2021;18:3511. doi: 10.3390/ijerph18073511. PubMed DOI PMC
Pérez-Indoval R., Rodrigo-Ilarri J., Cassiraga E., Rodrigo-Clavero M.E. PWC-based evaluation of groundwater pesticide pollution in the Júcar River Basin. Sci. Total Environ. 2022;847:157386. doi: 10.1016/j.scitotenv.2022.157386. PubMed DOI
Rodrigo-Ilarri J., Rodrigo-Clavero M.E., Cassiraga E., Ballesteros-Almonacid L. Assessment of groundwater contamination by terbuthylazine using vadose zone numerical models. Case study of valencia province (spain) Int. J. Environ. Res. Public Health. 2020;17:3280. doi: 10.3390/ijerph17093280. PubMed DOI PMC
Coscollà C., López A., Yahyaoui A., Colin P., Robin C., Poinsignon Q., Yusà V. Human exposure and risk assessment to airborne pesticides in a rural French community. Sci. Total Environ. 2017;584–585:856–868. doi: 10.1016/j.scitotenv.2017.01.132. PubMed DOI
Fuhrimann S., Klánová J., Přibylová P., Kohoutek J., Dalvie M.A., Röösli M., Degrendele C. Qualitative assessment of 27 current-use pesticides in air at 20 sampling sites across Africa. Chemosphere. 2020;258:127333. doi: 10.1016/j.chemosphere.2020.127333. PubMed DOI
Quirós-Alcalá L., Bradman A., Smith K., Weerasekera G., Odetokun M., Barr D.B., Nishioka M., Castorina R., Hubbard A.E., Nicas M., et al. Organophosphorous pesticide breakdown products in house dust and children’s urine. J. Expo. Sci. Environ. Epidemiol. 2012;22:559–568. doi: 10.1038/jes.2012.46. PubMed DOI PMC
Trunnelle K.J., Bennett D.H., Tancredi D.J., Gee S.J., Stoecklin-Marois M.T., Hennessy-Burt T.E., Hammock B.D., Schenker M.B. Pyrethroids in house dust from the homes of farm worker families in the MICASA study. Environ. Int. 2013;61:57–63. doi: 10.1016/j.envint.2013.09.007. PubMed DOI PMC
Bradman A., Whitaker D., Quirós L., Castorina R., Henn B.C., Nishioka M., Morgan J., Barr D.B., Harnly M., Brisbin J.A., et al. Pesticides and their metabolites in the homes and urine of farmworker children living in the Salinas Valley, CA. J. Expo. Sci. Environ. Epidemiol. 2007;17:331–349. doi: 10.1038/sj.jes.7500507. PubMed DOI
Fuhrimann S., Mol H.G.J., Dias J., Dalvie M.A., Röösli M., Degrendele C., Figueiredo D.M., Huss A., Portengen L., Vermeulen R. Quantitative assessment of multiple pesticides in silicone wristbands of children/guardian pairs living in agricultural areas in South Africa. Sci. Total Environ. 2022;812:152330. doi: 10.1016/j.scitotenv.2021.152330. PubMed DOI
Arcury T.A., Chen H., Quandt S.A., Talton J.W., Anderson K.A., Scott R.P., Jensen A., Laurienti P.J. Pesticide exposure among Latinx children: Comparison of children in rural, farmworker and urban, non-farmworker communities. Sci. Total Environ. 2021;763:144233. doi: 10.1016/j.scitotenv.2020.144233. PubMed DOI PMC
Fišerová P.S., Kohoutek J., Degrendele C., Dalvie M.A., Klánová J. New sample preparation method to analyse 15 specific and non-specific pesticide metabolites in human urine using LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021;1166:122542. doi: 10.1016/j.jchromb.2021.122542. PubMed DOI
Bravo N., Grimalt J.O., Mazej D., Tratnik J.S., Sarigiannis D.A., Horvat M. Mother/child organophosphate and pyrethroid distributions. Environ. Int. 2020;134:105264. doi: 10.1016/j.envint.2019.105264. PubMed DOI
Molomo R.N., Basera W., Chetty-Mhlanga S., Fuhrimann S., Mugari M., Wiesner L., Röösli M., Dalvie M.A. Relation between organophosphate pesticide metabolite concentrations with pesticide exposures, socio-economic factors and lifestyles: A cross-sectional study among school boys in the rural western cape, South Africa. Environ. Pollut. 2021;275:116660. doi: 10.1016/j.envpol.2021.116660. PubMed DOI
Huen K., Bradman A., Harley K., Yousefi P., Boyd Barr D., Eskenazi B., Holland N. Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community. Environ. Res. 2012;117:8–16. doi: 10.1016/j.envres.2012.05.005. PubMed DOI PMC
Afata T.N., Mekonen S., Tucho G.T. Evaluating the Level of Pesticides in the Blood of Small-Scale Farmers and Its Associated Risk Factors in Western Ethiopia. Environ. Health Insights. 2021;15:11786302211043660. doi: 10.1177/11786302211043660. PubMed DOI PMC
Von Ehrenstein O.S., Ling C., Cui X., Cockburn M., Park A.S., Yu F., Wu J., Ritz B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ. 2019;364:l962. doi: 10.1136/bmj.l962. PubMed DOI PMC
Roberts E.M., English P.B., Grether J.K., Windham G.C., Somberg L., Wolff C. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ. Health Perspect. 2007;115:1482–1489. doi: 10.1289/ehp.10168. PubMed DOI PMC
Yitshak Sade M., Zlotnik Y., Kloog I., Novack V., Peretz C., Ifergane G. Parkinson’s disease prevalence and proximity to agricultural cultivated fields. Parkinsons. Dis. 2015;2015:576564. doi: 10.1155/2015/576564. PubMed DOI PMC
Patel D.M., Gyldenkærne S., Jones R.R., Olsen S.F., Tikellis G., Granström C., Dwyer T., Stayner L.T., Ward M.H. Residential proximity to agriculture and risk of childhood leukemia and central nervous system tumors in the Danish national birth cohort. Environ. Int. 2020;143:105955. doi: 10.1016/j.envint.2020.105955. PubMed DOI PMC
Gómez-Barroso D., García-Pérez J., López-Abente G., Tamayo-Uria I., Morales-Piga A., Pardo Romaguera E., Ramis R. Agricultural crop exposure and risk of childhood cancer: New findings from a case-control study in Spain. Int. J. Health Geogr. 2016;15:18. doi: 10.1186/s12942-016-0047-7. PubMed DOI PMC
Chetty-Mhlanga S., Fuhrimann S., Basera W., Eeftens M., Röösli M., Dalvie M.A. Association of activities related to pesticide exposure on headache severity and neurodevelopment of school-children in the rural agricultural farmlands of the Western Cape of South Africa. Environ. Int. 2021;146:106237. doi: 10.1016/j.envint.2020.106237. PubMed DOI
Weschler C.J., Nazaroff W.W. Semivolatile organic compounds in indoor environments. Atmos. Environ. 2008;42:9018–9040. doi: 10.1016/j.atmosenv.2008.09.052. DOI
Glorennec P., Serrano T., Fravallo M., Warembourg C., Monfort C., Cordier S., Viel J.F., Le Gléau F., Le Bot B., Chevrier C. Determinants of children’s exposure to pyrethroid insecticides in western France. Environ. Int. 2017;104:76–82. doi: 10.1016/j.envint.2017.04.007. PubMed DOI
Yu Y., Li C., Zhang X., Zhang X., Pang Y., Zhang S., Fu J. Route-specific daily uptake of organochlorine pesticides in food, dust, and air by Shanghai residents, China. Environ. Int. 2012;50:31–37. doi: 10.1016/j.envint.2012.09.007. PubMed DOI
Li L., Arnot J.A., Wania F. How are Humans Exposed to Organic Chemicals Released to Indoor Air? Environ. Sci. Technol. 2019;53:11276–11284. doi: 10.1021/acs.est.9b02036. PubMed DOI
Fischer D., Hooper K., Athanasiadou M., Athanassiadis I., Bergman Å. Children show highest levels of polybrominated diphenyl ethers in a California family of four: A case study. Environ. Health Perspect. 2006;114:1581–1584. doi: 10.1289/ehp.8554. PubMed DOI PMC
Morgan M.K., Wilson N.K., Chuang J.C. Exposures of 129 preschool children to organochlorines, organophosphates, pyrethroids, and acid herbicides at their homes and daycares in North Carolina. Int. J. Environ. Res. Public Health. 2014;11:3743–3764. doi: 10.3390/ijerph110403743. PubMed DOI PMC
Morgan M.K. Children’s exposures to pyrethroid insecticides at home: A review of data collected in published exposure measurement studies conducted in the United States. Int. J. Environ. Res. Public Health. 2012;9:2964–2985. doi: 10.3390/ijerph9082964. PubMed DOI PMC
Deziel N., Friesen M., Hoppin J., Hines C., Thomas K., Beane Freeman L. Exposition non professionnelle des femmes aux pesticides en milieu rural: État des lieux des connaissances. Environ. Risques Sante. 2015;14:473–475.
Shaffer R.M., Smith M.N., Faustman E.M. Developing the regulatory utility of the exposome: Mapping exposures for risk assessment through lifestage exposome snapshots (LEnS) Environ. Health Perspect. 2017;125:085003. doi: 10.1289/EHP1250. PubMed DOI PMC
Teysseire R., Manangama G., Baldi I., Carles C., Brochard P., Bedos C., Delva F. Determinants of non-dietary exposure to agricultural pesticides in populations living close to fields: A systematic review. Sci. Total Environ. 2021:761. doi: 10.1016/j.scitotenv.2020.143294. PubMed DOI
Teysseire R., Manangama G., Baldi I., Carles C., Brochard P., Bedos C., Delva F. Assessment of residential exposures to agricultural pesticides: A scoping review. PLoS ONE. 2020;15:e0232258. doi: 10.1371/journal.pone.0232258. PubMed DOI PMC
Lucattini L., Poma G., Covaci A., de Boer J., Lamoree M.H., Leonards P.E.G. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere. 2018;201:466–482. doi: 10.1016/j.chemosphere.2018.02.161. PubMed DOI
Schweizer C., Edwards R.D., Bayer-Oglesby L., Gauderman W.J., Ilacqua V., Juhani Jantunen M., Lai H.K., Nieuwenhuijsen M., Künzli N. Indoor time-microenvironment-activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007;17:170–181. doi: 10.1038/sj.jes.7500490. PubMed DOI
Salthammer T., Zhang Y., Mo J., Koch H.M., Weschler C.J. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew. Chem. 2018;130:12406–12443. doi: 10.1002/ange.201711023. PubMed DOI
Melymuk L., Demirtepe H., Jílková S.R. Indoor dust and associated chemical exposures. Curr. Opin. Environ. Sci. Health. 2020;15:1–6. doi: 10.1016/j.coesh.2020.01.005. DOI
Van den Berg F., Kubiak R., Benjey W.G., Majewski M.S., Yates S.R., Reeves G.L., Smelt J.H., van der Linden A.M.A. Emission of pesticides into the air. Water. Air. Soil Pollut. 1999;115:195–218. doi: 10.1023/A:1005234329622. DOI
Das S., Hageman K.J., Taylor M., Michelsen-Heath S., Stewart I. Fate of the organophosphate insecticide, chlorpyrifos, in leaves, soil, and air following application. Chemosphere. 2020;243:125194. doi: 10.1016/j.chemosphere.2019.125194. PubMed DOI
Degrendele C., Audy O., Hofman J., Kučerik J., Kukučka P., Mulder M.D., Přibylová P., Prokeš R., Šáňka M., Schaumann G.E., et al. Diurnal variations of air-soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a Central European receptor area. Environ. Sci. Technol. 2016;50:4278–4288. doi: 10.1021/acs.est.5b05671. PubMed DOI
Davie-Martin C.L., Hageman K.J., Chin Y.-P.P., Rougé V., Fujita Y. Influence of temperature, relative humidity, and soil properties on the soil-air partitioning of semivolatile pesticides: Laboratory measurements and predictive models. Environ. Sci. Technol. 2015;49:10431–10439. doi: 10.1021/acs.est.5b02525. PubMed DOI
FOCUS Air Group FOCUS Pesticides in Air: Considerations for Exposure Assessment. Rep. Focus Work. Gr. Pestic. Air. 2008;327:12–74.
Figueiredo D.M., Nijssen R., Krop E.J.M., Buijtenhuijs D., Gooijer Y., Lageschaar L., Duyzer J., Huss A., Mol H., Vermeulen R.C.H. Pesticides in doormat and floor dust from homes close to treated fields: Spatio-temporal variance and determinants of occurrence and concentrations. Environ. Pollut. 2022;301:119024. doi: 10.1016/j.envpol.2022.119024. PubMed DOI
Deziel N.C., Friesen M.C., Hoppin J.A., Hines C.J., Thomas K., Beane Freeman L.E. A Review of Nonoccupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas. Environ. Health Perspect. 2015;123:515–524. doi: 10.1289/ehp.1408273. PubMed DOI PMC
Curl C.L., Fenske R.A., Kissel J.C., Shirai J.H., Moate T.F., Griffith W., Coronado G., Thompson B. Evaluation of Take-Home Organophosphorus Pesticide Exposure among Agricultural Workers and Their Children. Environ. Health Perspect. 2002;110:A787–A792. doi: 10.1289/ehp.021100787. PubMed DOI PMC
Lu C., Fenske R.A., Simcox N.J., Kalman D. Proceedings of the Environmental Research. Volume 84. Academic Press Inc.; New York, NY, USA: 2000. Pesticide exposure of children in an agricultural community: Evidence of household proximity to farmland and take home exposure pathways; pp. 290–302. PubMed
Gunier R.B., Ward M.H., Airola M., Bell E.M., Colt J., Nishioka M., Buffler P.A., Reynolds P., Rull R.P., Hertz A., et al. Determinants of agricultural pesticide concentrations in carpet dust. Environ. Health Perspect. 2011;119:970–976. doi: 10.1289/ehp.1002532. PubMed DOI PMC
Raffy G., Mercier F., Blanchard O., Derbez M., Dassonville C., Bonvallot N., Glorennec P., Le Bot B. Semi-volatile organic compounds in the air and dust of 30 French schools: A pilot study. Indoor Air. 2017;27:114–127. doi: 10.1111/ina.12288. PubMed DOI
Deziel N.C., Beane Freeman L.E., Graubard B.I., Jones R.R., Hoppin J.A., Thomas K., Hines C.J., Blair A., Sandler D.P., Chen H., et al. Relative contributions of agricultural drift, para-occupational, and residential use exposure pathways to house dust pesticide concentrations: Meta-regression of published data. Environ. Health Perspect. 2017;125:296–305. doi: 10.1289/EHP426. PubMed DOI PMC
Bennett B., Workman T., Smith M.N., Griffith W.C., Thompson B., Faustman E.M. Longitudinal, seasonal, and occupational trends of multiple pesticides in house dust. Environ. Health Perspect. 2019;127:017003. doi: 10.1289/EHP3644. PubMed DOI PMC
Li H., Ma H., Lydy M.J., You J. Occurrence, seasonal variation and inhalation exposure of atmospheric organophosphate and pyrethroid pesticides in an urban community in South China. Chemosphere. 2014;95:363–369. doi: 10.1016/j.chemosphere.2013.09.046. PubMed DOI
Jiang W., Conkle J.L., Luo Y., Li J., Xu K., Gan J. Occurrence, distribution, and accumulation of pesticides in exterior residential areas. Environ. Sci. Technol. 2016;50:12592–12601. doi: 10.1021/acs.est.6b01396. PubMed DOI
Quirós-Alcalá L., Bradman A., Nishioka M., Harnly M.E., Hubbard A., McKone T.E., Ferber J., Eskenazi B. Pesticides in house dust from urban and farmworker households in California: An observational measurement study. Environ. Health Glob. Access Sci. Source. 2011;10:19. doi: 10.1186/1476-069X-10-19. PubMed DOI PMC
Dalvie M.A., Sosan M.B., Africa A., Cairncross E., London L. Environmental monitoring of pesticide residues from farms at a neighbouring primary and pre-school in the Western Cape in South Africa. Sci. Total Environ. 2014;466–467:1078–1084. doi: 10.1016/j.scitotenv.2013.07.099. PubMed DOI
AVCASA Croplife South Africa Agricultural Remedies Database. [(accessed on 30 August 2022)]. Available online: https://www.croplife.co.za/images/croplife/home/CROPLIFESOUTHAFRICAAGRICULTURALREMEDIESDATABASEINTRODUCTION.pdf.
Tang F.H.M., Lenzen M., McBratney A., Maggi F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021;14:206–210. doi: 10.1038/s41561-021-00712-5. DOI
Chetty-Mhlanga S., Basera W., Fuhrimann S., Probst-Hensch N., Delport S., Mugari M., Van Wyk J., Roosli M., Dalvie M.A., Röösli M., et al. A prospective cohort study of school-going children investigating reproductive and neurobehavioral health effects due to environmental pesticide exposure in the Western Cape, South Africa: Study protocol. BMC Public Health. 2018;18:857. doi: 10.1186/s12889-018-5783-0. PubMed DOI PMC
Degrendele C., Klánová J., Prokeš R., Příbylová P., Šenk P., Šudoma M., Röösli M., Dalvie M.A., Fuhrimann S. Current use pesticides in soil and air from two agricultural sites in South Africa: Implications for environmental fate and human exposure. Sci. Total Environ. 2022;807:150455. doi: 10.1016/j.scitotenv.2021.150455. PubMed DOI
Veludo A.F., Martins Figueiredo D., Degrendele C., Masinyana L., Curchod L., Kohoutek J., Kukučka P., Martiník J., Přibylová P., Klánová J., et al. Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa. Chemosphere. 2022;289:133162. doi: 10.1016/j.chemosphere.2021.133162. PubMed DOI
Curchod L., Oltramare C., Junghans M., Stamm C., Dalvie M.A., Röösli M., Fuhrimann S. Temporal variation of pesticide mixtures in rivers of three agricultural watersheds during a major drought in the Western Cape, South Africa. Water Res. X. 2020;6:100039. doi: 10.1016/j.wroa.2019.100039. PubMed DOI PMC
Cao Z.G., Yu G., Chen Y.S., Cao Q.M., Fiedler H., Deng S.B., Huang J., Wang B. Particle size: A missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environ. Int. 2012;49:24–30. doi: 10.1016/j.envint.2012.08.010. PubMed DOI
Mercier F., Glorennec P., Thomas O., Bot B. Le Organic contamination of settled house dust, a review for exposure assessment purposes. Environ. Sci. Technol. 2011;45:6716–6727. doi: 10.1021/es200925h. PubMed DOI
Maggi F., Tang F.H.M., la Cecilia D., McBratney A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data. 2019;6:170. doi: 10.1038/s41597-019-0169-4. PubMed DOI PMC
Jepson P.C., Murray K., Bach O., Bonilla M.A., Neumeister L. Selection of pesticides to reduce human and environmental health risks: A global guideline and minimum pesticides list. Lancet Planet. Health. 2020;4:e56–e63. doi: 10.1016/S2542-5196(19)30266-9. PubMed DOI
U.S. Environmental Protection Agency (EPA) Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency (EPA); Washington, DC, USA,: 2011. EPA/600/R-09/052F.
Raffy G., Mercier F., Glorennec P., Mandin C., Le Bot B. Oral bioaccessibility of semi-volatile organic compounds (SVOCs) in settled dust: A review of measurement methods, data and influencing factors. J. Hazard. Mater. 2018;352:215–227. doi: 10.1016/j.jhazmat.2018.03.035. PubMed DOI
Besis A., Botsaropoulou E., Balla D., Voutsa D., Samara C. Toxic organic pollutants in Greek house dust: Implications for human exposure and health risk. Chemosphere. 2021;284:131318. doi: 10.1016/j.chemosphere.2021.131318. PubMed DOI
Lewis K.A., Tzilivakis J., Warner D.J., Green A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016;22:1050–1064. doi: 10.1080/10807039.2015.1133242. DOI
Dodson R.E., Camann D.E., Morello-Frosch R., Brody J.G., Rudel R.A. Semivolatile organic compounds in homes: Strategies for efficient and systematic exposure measurement based on empirical and theoretical factors. Environ. Sci. Technol. 2015;49:113–122. doi: 10.1021/es502988r. PubMed DOI PMC
Coronado G.D., Holte S., Vigoren E., Griffith W.C., Barr D.B., Faustman E., Thompson B. Organophosphate pesticide exposure and residential proximity to nearby fields: Evidence for the drift pathway. J. Occup. Environ. Med. 2011;53:884–891. doi: 10.1097/JOM.0b013e318222f03a. PubMed DOI PMC
Simaremare S.R.S., Hung C.C., Yu T.H., Hsieh C.J., Yiin L.M. Association between pesticides in house dust and residential proximity to farmland in a rural region of taiwan. Toxics. 2021;9:180. doi: 10.3390/toxics9080180. PubMed DOI PMC
Motsoeneng P.M., Dalvie M.A. Relationship between urinary pesticide residue levels and neurotoxic symptoms among women on farms in the Western Cape, South Africa. Int. J. Environ. Res. Public Health. 2015;12:6281–6299. doi: 10.3390/ijerph120606281. PubMed DOI PMC
Fenske R.A., Lu C., Barr D., Needham L. Children’s Exposure to Chlorpyrifos and Parathion in an Agricultural Community in Central Washington State. Environ. Health Perspect. 2002;110:549–553. doi: 10.1289/ehp.02110549. PubMed DOI PMC
Waheed S., Halsall C., Sweetman A.J., Jones K.C., Malik R.N. Pesticides contaminated dust exposure, risk diagnosis and exposure markers in occupational and residential settings of Lahore, Pakistan. Environ. Toxicol. Pharmacol. 2017;56:375–382. doi: 10.1016/j.etap.2017.11.003. PubMed DOI
UNEP Stockholm Convention. [(accessed on 31 August 2022)]. Available online: http://chm.pops.int.
Balmer J.E., Morris A.D., Hung H., Jantunen L., Vorkamp K., Rigét F., Evans M., Houde M., Muir D.C.G. Levels and trends of current-use pesticides (CUPs) in the arctic: An updated review, 2010–2018. Emerg. Contam. 2019;5:70–88. doi: 10.1016/j.emcon.2019.02.002. DOI
Colt J.S., Lubin J., Camann D., Davis S., Cerhan J., Severson R.K., Cozen W., Hartge P. Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four US sites. J. Expo. Anal. Environ. Epidemiol. 2004;14:74–83. doi: 10.1038/sj.jea.7500307. PubMed DOI
Julien R., Adamkiewicz G., Levy J.I., Bennett D., Nishioka M., Spengler J.D. Pesticide loadings of select organophosphate and pyrethroid pesticides in urban public housing. J. Expo. Sci. Environ. Epidemiol. 2008;18:167–174. doi: 10.1038/sj.jes.7500576. PubMed DOI
Wang X., Banks A.P.W., He C., Drage D.S., Gallen C.L., Li Y., Li Q., Thai P.K., Mueller J.F. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and legacy and current pesticides in indoor environment in Australia–occurrence, sources and exposure risks. Sci. Total Environ. 2019;693:133588. doi: 10.1016/j.scitotenv.2019.133588. PubMed DOI
Wei W., Ramalho O., Mandin C. A long-term dynamic model for predicting the concentration of semivolatile organic compounds in indoor environments: Application to phthalates. Build. Environ. 2019;148:11–19. doi: 10.1016/j.buildenv.2018.10.044. DOI
Wei W., Mandin C., Blanchard O., Mercier F., Pelletier M., Le Bot B., Glorennec P., Ramalho O. Semi-volatile organic compounds in French dwellings: An estimation of concentrations in the gas phase and particulate phase from settled dust. Sci. Total Environ. 2019;650:2742–2750. doi: 10.1016/j.scitotenv.2018.09.398. PubMed DOI
Melymuk L., Bohlin-Nizzetto P., Kukučka P., Vojta Š., Kalina J., Čupr P., Klánová J. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air. Environ. Pollut. 2016;218:392–401. doi: 10.1016/j.envpol.2016.07.018. PubMed DOI
Mackay D., Celsie A.K.D., Parnis J.M. Kinetic Delay in Partitioning and Parallel Particle Pathways: Underappreciated Aspects of Environmental Transport. Environ. Sci. Technol. 2019;53:234–241. doi: 10.1021/acs.est.8b04514. PubMed DOI
Hung C.C., Huang F.J., Yang Y.Q., Hsieh C.J., Tseng C.C., Yiin L.M. Pesticides in indoor and outdoor residential dust: A pilot study in a rural county of Taiwan. Environ. Sci. Pollut. Res. 2018;25:23349–23356. doi: 10.1007/s11356-018-2413-4. PubMed DOI
Velázquez-Gómez M., Hurtado-Fernández E., Lacorte S. Differential occurrence, profiles and uptake of dust contaminants in the Barcelona urban area. Sci. Total Environ. 2019;648:1354–1370. doi: 10.1016/j.scitotenv.2018.08.058. PubMed DOI
Nakagawa L.E., Costa A.R., Polatto R., Nascimento C.M.d., Papini S. Pyrethroid concentrations and persistence following indoor application. Environ. Toxicol. Chem. 2017;36:2895–2898. doi: 10.1002/etc.3860. PubMed DOI
Calabrese E.J., Stanek E.J. What proportion of household dust is derived from outdoor soil? J. Soil Contam. 1992;1:253–263. doi: 10.1080/15320389209383415. DOI
Simcox N.J., Fenske R.A., Wolz S.A., Lee I.-C., Kalman D.A. Pesticides in Household Dust and Soil: Exposure Pathways for Children of Agricultural Families. Environ. Health Perspect. 1995;103:1126–1134. doi: 10.1289/ehp.951031126. PubMed DOI PMC
Ward M.H., Lubin J., Giglierano J., Colt J.S., Wolter C., Bekiroglu N., Camann D., Hartge P., Nuckols J.R. Proximity to crops and residential to agricultural herbicides in Iowa. Environ. Health Perspect. 2006;114:893–897. doi: 10.1289/ehp.8770. PubMed DOI PMC
Branch R., Jacqz E. Is carbaryl as safe as its reputation? Am. J. Med. 1986;81:1124–1125. PubMed
Rosas L.G., Eskenazi B. Pesticides and child neurodevelopment. Curr. Opin. Pediatr. 2008;20:191–197. doi: 10.1097/MOP.0b013e3282f60a7d. PubMed DOI
van Wendel de Joode B., Mora A.M., Lindh C.H., Hernández-Bonilla D., Córdoba L., Wesseling C., Hoppin J.A., Mergler D. Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex. 2016;85:137–150. doi: 10.1016/j.cortex.2016.09.003. PubMed DOI
Clayton C.A., Pellizzari E.D., Whitmore R.W., Quackenboss J.J., Adgate J., Sefton K. Distributions, associations, and partial ag-gregate exposure of pesticides and polynuclear aromatic hydrocarbons in the Minnesota Children’s Pesticide Exposure Study (MNCPES) J. Expo. Anal. Environ. Epidemiol. 2003;13:100–111. doi: 10.1038/sj.jea.7500261. PubMed DOI
Lu C., Toepel K., Irish R., Fenske R.A., Barr D.B., Bravo R. Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ. Health Perspect. 2006;114:260–263. doi: 10.1289/ehp.8418. PubMed DOI PMC
Wilson N.K., Chuang J.C., Lyu C., Menton R., Morgan M.K. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J. Expo. Anal. Environ. Epidemiol. 2003;13:187–202. doi: 10.1038/sj.jea.7500270. PubMed DOI
Fenner K., Canonica S., Wackett L.P., Elsner M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science. 2013;341:752–758. doi: 10.1126/science.1236281. PubMed DOI
Jílková S., Melymuk L., Vojta Š., Vykoukalová M., Bohlin-Nizzetto P., Klánová J. Small-scale spatial variability of flame retardants in indoor dust and implications for dust sampling. Chemosphere. 2018;206:132–141. doi: 10.1016/j.chemosphere.2018.04.146. PubMed DOI
Wason S.C., Julien R., Perry M.J., Smith T.J., Levy J.I. Modeling exposures to organophosphates and pyrethroids for children living in an urban low-income environment. Environ. Res. 2013;124:13–22. doi: 10.1016/j.envres.2012.08.009. PubMed DOI
Goldstein A.H., Nazaroff W.W., Weschler C.J., Williams J. How Do Indoor Environments Affect Air Pollution Exposure? Environ. Sci. Technol. 2021;55:100–108. doi: 10.1021/acs.est.0c05727. PubMed DOI
Salthammer T. Emerging indoor pollutants. Int. J. Hyg. Environ. Health. 2020:224. doi: 10.1016/j.ijheh.2019.113423. PubMed DOI
Zhou Y., Guo J., Wang Z., Zhang B., Sun Z., Yun X., Zhang J. Levels and inhalation health risk of neonicotinoid insecticides in fine particulate matter (PM2.5) in urban and rural areas of China. Environ. Int. 2020;142:105822. doi: 10.1016/j.envint.2020.105822. PubMed DOI