Internal Flames: Metal(loid) Exposure Linked to Alteration of the Lipid Profile in Czech Male Firefighters (CELSPAC-FIREexpo Study)

. 2024 Jul 09 ; 11 (7) : 679-686. [epub] 20240612

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39006815

Increased wildfire activity increases the demands on fire rescue services and firefighters' contact with harmful chemicals. This study aimed to determine firefighters' exposure to toxic metal(loid)s and its association with the lipid profile. CELSPAC-FIREexpo study participants (including 110 firefighters) provided urine and blood samples to quantify urinary levels of metal(loid)s (arsenic, cadmium (Cd), mercury, and lead (Pb)), and serum lipid biomarkers (cholesterol (CHOL), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglycerides (TG)). The associations were investigated by using multiple linear regression and Bayesian weighted quantile sum (BWQS) regression. Higher levels of Pb were observed in firefighters. Pb was positively associated with CHOL and TG. Cd was negatively associated with HDL. In the BWQS model, the mixture of metal(loid)s was associated positively with CHOL (β = 14.75, 95% CrI = 2.45-29.08), LDL (β = 15.14, 95% CrI = 3.39-29.35), and TG (β = 14.79, 95% CrI = 0.73-30.42), while negatively with HDL (β = -14.96, 95% CrI = -25.78 to -1.8). Pb emerged as a key component in a metal(loid) mixture. The results suggest that higher exposure to lead and the mixture of metal(loid)s is associated with the alteration of the lipid profile, which can result in an unfavorable cardiometabolic profile, especially in occupationally exposed firefighters.

Zobrazit více v PubMed

Trnka M.; Balek J.; Možný M.; Cienciala E.; Cermák P.; Semerádová D.; Jurecka F.; Hlavinka P.; Štepánek P.; Farda A.; Skalák P.; Beranová J.; Chuchma F.; Zahradnícek P.; Janouš D.; Žalud Z.; Dubrovský M.; Kindlmann P.; Krenová Z.; Fischer M.; Hruška J.; Brázdil R. Observed and Expected Changes in Wildfireconducive Weather and Fire Events in Peri-Urban Zones and Key Nature Reserves of the Czech Republic. Clim. Res. 2020, 82, 33–54. 10.3354/cr01617. DOI

Janoš T.; Ballester J.; Cupr P.; Achebak H. Countrywide Analysis of Heat- and Cold-Related Mortality Trends in the Czech Republic: Growing Inequalities under Recent Climate Warming. Int. J. Epidemiol. 2024, 53, dyad141.10.1093/ije/dyad141. PubMed DOI PMC

Nedělníková H.Statistical Yearbook of Fire and Rescue Service of Czech Republic 2022. https://www.hzscr.cz/clanek/statisticke-rocenky-hasicskeho-zachranneho-sboru-cr.aspx.

Bar-Massada A.; Alcasena F.; Schug F.; Radeloff V. C. The Wildland – Urban Interface in Europe: Spatial Patterns and Associations with Socioeconomic and Demographic Variables. Landsc. Urban Plan. 2023, 235, 10475910.1016/j.landurbplan.2023.104759. DOI

Resongles E.; Dietze V.; Green D. C.; Harrison R. M.; Ochoa-Gonzalez R.; Tremper A. H.; Weiss D. J. Strong Evidence for the Continued Contribution of Lead Deposited during the 20th Century to the Atmospheric Environment in London of Today. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (26), e2102791118.10.1073/pnas.2102791118. PubMed DOI PMC

Radziemska M.; Fronczyk J. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland. Int. J. Environ. Res. Public Health 2015, 12 (10), 13372–13387. 10.3390/ijerph121013372. PubMed DOI PMC

Yano J.; Xu G.; Liu H.; Toyoguchi T.; Iwasawa H.; Sakai S.-i. Resource and Toxic Characterization in End-of-Life Vehicles through Dismantling Survey. J. Mater. Cycles Waste Manag. 2019, 21 (6), 1488–1504. 10.1007/s10163-019-00902-9. DOI

Bang Y. Y.; Hong N. J.; Sung Lee D.; Lim S. R. Comparative Assessment of Solar Photovoltaic Panels Based on Metal-Derived Hazardous Waste, Resource Depletion, and Toxicity Potentials. Int. J. Green Energy 2018, 15 (10), 550–557. 10.1080/15435075.2018.1505618. DOI

Alexakis D. E. Suburban Areas in Flames: Dispersion of Potentially Toxic Elements from Burned Vegetation and Buildings. Estimation of the Associated Ecological and Human Health Risk. Environ. Res. 2020, 183, 10915310.1016/j.envres.2020.109153. PubMed DOI

Kristensen L. J.; Taylor M. P. Fields and Forests in Flames: Lead and Mercury Emissions from Wildfire Pyrogenic Activity. PLoS Med. 2012, 120 (2), 0203–0208. 10.1289/ehp.1104672. PubMed DOI PMC

California Air Resources Board . Camp Fire Air Quality Data Analysis. https://ww2.arb.ca.gov/sites/default/files/2021-07/Camp_Fire_report_July2021.pdf.

Boaggio K.; Leduc S. D.; Rice R. B.; Duffney P. F.; Foley K. M.; Holder A. L.; McDow S.; Weaver C. P. Beyond Particulate Matter Mass: Heightened Levels of Lead and Other Pollutants Associated with Destructive Fire Events in California. Environ. Sci. Technol. 2022, 56 (20), 14272–14283. 10.1021/acs.est.2c02099. PubMed DOI PMC

Keir J. L. A.; Akhtar U. S.; Matschke D. M. J.; White P. A.; Kirkham T. L.; Chan H. M.; Blais J. M. Polycyclic Aromatic Hydrocarbon (PAH) and Metal Contamination of Air and Surfaces Exposed to Combustion Emissions during Emergency Fire Suppression: Implications for Firefighters’ Exposures. Sci. Total Environ. 2020, 698, 13421110.1016/j.scitotenv.2019.134211. PubMed DOI

Banks A. P. W.; Thai P.; Engelsman M.; Wang X.; Osorio A. F.; Mueller J. F. Characterising the Exposure of Australian Firefighters to Polycyclic Aromatic Hydrocarbons Generated in Simulated Compartment Fires. Int. J. Hyg. Environ. Health 2021, 231, 11363710.1016/j.ijheh.2020.113637. PubMed DOI

Wang G.; Fang L.; Chen Y.; Ma Y.; Zhao H.; Wu Y.; Xu S.; Cai G.; Pan F. Association between Exposure to Mixture of Heavy Metals and Hyperlipidemia Risk among U.S. Adults: A Cross-Sectional Study. Chemosphere 2023, 344, 140334.10.1016/j.chemosphere.2023.140334. PubMed DOI

Zhang Y.; Liu W.; Zhang W.; Cheng R.; Tan A.; Shen S.; Xiong Y.; Zhao L.; Lei X. Association between Blood Lead Levels and Hyperlipidemiais: Results from the NHANES (1999–2018). Front. Public Heal. 2022, 10, 981749.10.3389/fpubh.2022.981749. PubMed DOI PMC

Xu W.; Park S. K.; Gruninger S. E.; Charles S.; Franzblau A.; Basu N.; Goodrich J. M. Associations between Mercury Exposure with Blood Pressure and Lipid Levels: A Cross-Sectional Study of Dental Professionals. Environ. Res. 2023, 220, 11522910.1016/j.envres.2023.115229. PubMed DOI PMC

Buhari O.; Dayyab F. M.; Igbinoba O.; Atanda A.; Medhane F.; Faillace R. T. The Association between Heavy Metal and Serum Cholesterol Levels in the US Population: National Health and Nutrition Examination Survey 2009–2012. Hum. Exp. Toxicol. 2020, 39 (3), 355–364. 10.1177/0960327119889654. PubMed DOI

Engelsman M.; Toms L. M. L.; Banks A. P. W.; Wang X.; Mueller J. F. Biomonitoring in Firefighters for Volatile Organic Compounds, Semivolatile Organic Compounds, Persistent Organic Pollutants, and Metals: A Systematic Review. Environ. Res. 2020, 188 (April), 10956210.1016/j.envres.2020.109562. PubMed DOI

Barros B.; Oliveira M.; Morais S. Biomonitoring of Firefighting Forces: A Review on Biomarkers of Exposure to Health-Relevant Pollutants Released from Fires. J. Toxicol. Environ. Heal. - Part B Crit. Rev. 2023, 26 (3), 127–171. 10.1080/10937404.2023.2172119. PubMed DOI

Dobraca D.; Israel L.; McNeel S.; Voss R.; Wang M.; Gajek R.; Park J. S.; Harwani S.; Barley F.; She J.; Das R. Biomonitoring in California Firefighters: Metals and Perfluorinated Chemicals. J. Occup. Environ. Med. 2015, 57 (1), 88–97. 10.1097/JOM.0000000000000307. PubMed DOI PMC

Jeon Y. E.; Kim M. J.; Chung I.; Ha J. C. The Effect of Blood Cadmium Levels on Hypertension in Male Firefighters in a Metropolitan City. Ann. Occup. Environ. Med. 2022, 34 (1), 1–15. 10.35371/aoem.2022.34.e37. PubMed DOI PMC

Choi J. E.; Bae M. J.; Kim M. J.; Oh S. S.; Park K. S.; Lee C. J.; Park S.; Koh S. B.; Cho J.; Kim C. Heavy Metal Exposure Linked to Metabolic Syndrome in Korean Male Firefighters: FRESH Cohort Cross-Sectional Analysis. Sci. Rep. 2023, 13 (1), 1–7. 10.1038/s41598-023-41158-6. PubMed DOI PMC

Chang Z.; Qiu J.; Wang K.; Liu X.; Fan L.; Liu X.; Zhao Y.; Zhang Y. The Relationship between Co-Exposure to Multiple Heavy Metals and Liver Damage. J. Trace Elem. Med. Biol. 2023, 77, 12712810.1016/j.jtemb.2023.127128. PubMed DOI

Deng Q.; Dai X.; Feng W.; Huang S.; Yuan Y.; Xiao Y.; Zhang Z.; Deng N.; Deng H.; Zhang X.; Kuang D.; Li X.; Zhang W.; Zhang X.; Guo H.; Wu T. Co-Exposure to Metals and Polycyclic Aromatic Hydrocarbons, MicroRNA Expression, and Early Health Damage in Coke Oven Workers. Environ. Int. 2019, 122, 369–380. 10.1016/j.envint.2018.11.056. PubMed DOI

Nedělníková H.Statistical Yearbook of Fire and Rescue Service of Czech Republic 2020. https://www.hzscr.cz/clanek/statisticke-rocenky-hasicskeho-zachranneho-sboru-cr.aspx.

Řiháčková K.; Pindur A.; Komprdová K.; Pálešová N.; Kohoutek J.; Šenk P.; Navrátilová J.; Andrýsková L.; Šebejová L.; Hůlek R.; Ismael M.; Čupr P. The Exposure of Czech Firefighters to Perfluoroalkyl Substances and Polycyclic Aromatic Hydrocarbons: CELSPAC – FIREexpo Case-Control Human Biomonitoring Study. Sci. Total Environ. 2023, 881, 163298.10.1016/j.scitotenv.2023.163298. PubMed DOI PMC

Válková L.; Emmer J.; Kuta J.; Goldbergová M. P. Determination of Metal Ion Levels in Circulation in Patients with Joint Replacement. Hem. Ind. 2024, 78 (1S), 45.

Dereziński P.; Klupczyńska A.; Sawicki W.; Kokot Z. J. Creatinine Determination in Urine by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry Method. Acta Polym. Pharm. 2016, 73 (2), 303–313. PubMed

Sauvé J. F.; Lévesque M.; Huard M.; Drolet D.; Lavoué J.; Tardif R.; Truchon G. Creatinine and Specific Gravity Normalization in Biological Monitoring of Occupational Exposures. J. Occup. Environ. Hyg. 2015, 12 (2), 123–129. 10.1080/15459624.2014.955179. PubMed DOI

Shrier I.; Platt R. W. Reducing Bias through Directed Acyclic Graphs. BMC Med. Res. Methodol. 2008, 8, 1–15. 10.1186/1471-2288-8-70. PubMed DOI PMC

Colicino E.; Pedretti N. F.; Busgang S. A.; Gennings C. Per- And Poly-Fluoroalkyl Substances and Bone Mineral Density: Results from the Bayesian Weighted Quantile Sum Regression. Environ. Epidemiol. 2020, 4 (3), e092.10.1097/EE9.0000000000000092. PubMed DOI PMC

Maitre L.; Guimbaud J. B.; Warembourg C.; Güil-Oumrait N.; Petrone P. M.; Chadeau-Hyam M.; Vrijheid M.; Basagaña X.; Gonzalez J. R.; Alfano R.; Basu S.; Benavides J.; Broséus L.; Brunius C.; Caceres A.; Carli M.; Cazabet R.; Chattopadhyay S.; Chen Y. H.; Chillrud L.; Conti D.; Gennings C.; Gouripeddi R.; Iyer S. H.; Jedynak P.; Li H.; McGee G.; Midya V.; Mistry S.; Moccia C.; Mork S. D.; Pearce L. J.; Peruzzi M.; Pescador J. M.; Reimann B.; Roscoe J. C.; Shen X.; Stratakis N.; Wang Z.; Wang C.; Wheeler D.; Wilson A.; Wu Q.; Yu M.; Zhao Y.; Zou F.; Zugna D.; Chen R.; Chung Y. C.; Jang J.; Turyk M. State-of-the-Art Methods for Exposure-Health Studies: Results from the Exposome Data Challenge Event. Environ. Int. 2022, 168, 107422.10.1016/j.envint.2022.107422. PubMed DOI

Pedretti N. F.; Colicino E. R.. Package: BWQS: Bayesian Weighted Quantile Sum Regression. 2021. https://github.com/ElenaColicino/bwqs. PubMed PMC

Pálešová N.; Maitre L.; Stratakis N.; Řiháčková K.; Pindur A.; Kohoutek J.; Šenk P.; Bartošková Polcrová A.; Gregor P.; Vrijheid M.; Čupr P. Firefighters and the Liver: Exposure to PFAS and PAHs in Relation to Liver Function and Serum Lipids (CELSPAC-FIREexpo Study). Int. J. Hyg. Environ. Health 2023, 252, 11421510.1016/j.ijheh.2023.114215. PubMed DOI

RStudio Team . RStudio: Integrated Development for R. RStudio; PBC: Boston MA; Vienna, Austria, 2020; http://www.rstudio.com/ (accessed 2022-12-19).

Buekers J.; Baken K.; Govarts E.; Martin L. R.; Vogel N.; Kolossa-Gehring M.; Šlejkovec Z.; Falnoga I.; Horvat M.; Lignell S.; Lindroos A. K.; Rambaud L.; Riou M.; Pedraza-Diaz S.; Esteban-Lopez M.; Castaño A.; Den Hond E.; Baeyens W.; Santonen T.; Schoeters G. Human Urinary Arsenic Species, Associated Exposure Determinants and Potential Health Risks Assessed in the HBM4 EU Aligned Studies. Int. J. Hyg. Environ. Health 2023, 248, 114115.10.1016/j.ijheh.2023.114115. PubMed DOI

Hoet P.; Jacquerye C.; Deumer G.; Lison D.; Haufroid V. Reference Values and Upper Reference Limits for 26 Trace Elements in the Urine of Adults Living in Belgium. Clin. Chem. Lab. Med. 2013, 51 (4), 839–849. 10.1515/cclm-2012-0688. PubMed DOI

Gündüzöz M.; İritaş S. B.; Tutkun L.; Büyükşekerci M.; Çetintepe S. P.; Bal C.; Alışık M.; Erdoğan S.; Yılmaz H.; Erel Ö. A New Potential Biomarker in Early Diagnosis of Firefighter Lung Function Impairment: Dynamic Thiol/Disulphide Homeostasis. Cent. Eur. J. Public Health 2018, 26 (3), 190–194. 10.21101/cejph.a4972. PubMed DOI

Biomonitoring California . Project results for firefighter occupational exposures (FOX) project. Occupational Exposures (FOX) Project (Online). https://biomonitoring.ca.gov/projects/firefighter-occupational-exposures-fox-project.

Černá M.; Krsková A.; Čejchanová M.; Spěváčková V. Human Biomonitoring in the Czech Republic: An Overview. Int. J. Hyg. Environ. Health 2012, 215 (2), 109–119. 10.1016/j.ijheh.2011.09.007. PubMed DOI

Apel P.; Angerer J.; Wilhelm M.; Kolossa-Gehring M. New HBM Values for Emerging Substances, Inventory of Reference and HBM Values in Force, and Working Principles of the German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 2017, 220 (2), 152–166. 10.1016/j.ijheh.2016.09.007. PubMed DOI

European Environment Agency . Heavy metal emissions in Europe. https://www.eea.europa.eu/en/analysis/indicators/heavy-metal-emissions-in-europe?activeAccordion=.

Sallsten G.; Ellingsen D. G.; Berlinger B.; Weinbruch S.; Barregard L. Variability of Lead in Urine and Blood in Healthy Individuals. Environ. Res. 2022, 212 (PC), 11341210.1016/j.envres.2022.113412. PubMed DOI

Bolstad-Johnson D. M.; Burgess J. L.; Crutchfield C. D.; Storment S.; Gerkin R.; Wilson J. R. Characterization of Firefighter Exposures during Fire Overhaul. Am. Ind. Hyg. Assoc. J. 2000, 61 (5), 636–641. 10.1080/15298660008984572. PubMed DOI

Fabian T. Z.; Borgerson J. L.; Gandhi P. D.; Baxter C. S.; Ross C. S.; Lockey J. E.; Dalton J. M. Characterization of Firefighter Smoke Exposure. Fire Technol. 2014, 50 (4), 993–1019. 10.1007/s10694-011-0212-2. DOI

Zeng H.; Fang B.; Hao K.; Wang H.; Zhang L.; Wang M.; Hao Y.; Wang X.; Wang Q.; Yang W.; Rong S. Combined Effects of Exposure to Polycyclic Aromatic Hydrocarbons and Metals on Oxidative Stress among Healthy Adults in Caofeidian, China. Ecotoxicol. Environ. Saf. 2022, 230, 11316810.1016/j.ecoenv.2022.113168. PubMed DOI

Hu W.; Wang Y.; Wang T.; Ji Q.; Jia Q.; Meng T.; Ma S.; Zhang Z.; Li Y.; Chen R.; Dai Y.; Luan Y.; Sun Z.; Leng S.; Duan H.; Zheng Y. Ambient Particulate Matter Compositions and Increased Oxidative Stress: Exposure-Response Analysis among High-Level Exposed Population. Environ. Int. 2021, 147, 10634110.1016/j.envint.2020.106341. PubMed DOI

Kim D. W.; Ock J.; Moon K. W.; Park C. H. Association between Heavy Metal Exposure and Dyslipidemia among Korean Adults: From the Korean National Environmental Health Survey, 2015–2017. Int. J. Environ. Res. Public Health 2022, 19 (6), 3181.10.3390/ijerph19063181. PubMed DOI PMC

Xu P.; Liu A.; Li F.; Tinkov A. A.; Liu L.; Zhou J. C. Associations between Metabolic Syndrome and Four Heavy Metals: A Systematic Review and Meta-Analysis. Environ. Pollut. 2021, 273, 11648010.1016/j.envpol.2021.116480. PubMed DOI

Zhou Z.; Lu Y. H.; Pi H. F.; Gao P.; Li M.; Zhang L.; Pei L. P.; Mei X.; Liu L.; Zhao Q.; Qin Q. Z.; Chen Y.; Jiang Y. M.; Zhang Z. H.; Yu Z. P. Cadmium Exposure Is Associated with the Prevalence of Dyslipidemia. Cell. Physiol. Biochem. 2016, 40 (3–4), 633–643. 10.1159/000452576. PubMed DOI

Samarghandian S.; Azimi-Nezhad M.; Shabestari M. M.; Azad F. J.; Farkhondeh T.; Bafandeh F. Effect of Chronic Exposure to Cadmium on Serum Lipid, Lipoprotein and Oxidative Stress Indices in Male Rats. Interdiscip. Toxicol. 2015, 8 (3), 151–154. 10.1515/intox-2015-0023. PubMed DOI PMC

Sarmiento-Ortega V. E.; Treviño S.; Flores-Hernández J. Á.; Aguilar-Alonso P.; Moroni-González D.; Aburto-Luna V.; Diaz A.; Brambila E. Changes on Serum and Hepatic Lipidome after a Chronic Cadmium Exposure in Wistar Rats. Arch. Biochem. Biophys. 2017, 635 (July), 52–59. 10.1016/j.abb.2017.10.003. PubMed DOI

Abdel-Moneim A. M.; El-Toweissy M. Y.; Ali A. M.; Awad Allah A. A. M.; Darwish H. S.; Sadek I. A. Curcumin Ameliorates Lead (Pb2+)-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model. Biol. Trace Elem. Res. 2015, 168 (1), 206–220. 10.1007/s12011-015-0360-1. PubMed DOI

Sun H.; Wang N.; Nie X.; Zhao L.; Li Q.; Cang Z.; Chen C.; Lu M.; Cheng J.; Zhai H.; Xia F.; Ye L.; Lu Y. Lead Exposure Induces Weight Gain in Adult Rats, Accompanied by DNA Hypermethylation. PLoS One 2017, 12 (1), e0169958.10.1371/journal.pone.0169958. PubMed DOI PMC

Planchart A.; Green A.; Hoyo C.; Mattingly C. J. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr. Environ. Heal. reports 2018, 5 (1), 110–124. 10.1007/s40572-018-0182-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...