network analysis Dotaz Zobrazit nápovědu
sv.
- MeSH
- analýza potravin statistika a číselné údaje MeSH
- Publikační typ
- periodika MeSH
Default mode síť (DMN) je organizovaná síť mozkových oblastí zapojených do mozkové aktivity pozorovatelné v klidovém stavu. Při cíleném provádění experimentální kognitivní úlohy v průběhu vyšetření funkční magnetickou rezonancí (fMR) se tyto oblasti projevují jako tzv. deaktivace. Hlavními oblastmi zapojenými do této sítě jsou ventromediální prefrontální kortex/přední cingulum, zadní cingulum/precuneus a gyrus angularis/lobulus parietalis inferior. Pro sledování DMN u naší skupiny 10 zdravých dobrovolníků jsme použili jednak zobrazení deaktivace ve vztahu k paměťovému úkolu a korelační analýzu (tzv. seed funkční konektivitu) vycházející z oblasti zájmu přestavující cluster zadní cingulum/precuneus, jednak zobrazení pomocí analýzy nezávislých komponent (independent component analysis, ICA). Dále byly provedeny korelace fMR signálu s výkonem ve vizuálním prostorově paměťovém testu a v Addenbrookském kognitivním testu (ACE), konkrétně se subskóry verbální fluence (VFT) a paměť. Zobrazení DMN pomocí seed funkční konektivity významně lépe korelovalo s výsledkem ICA analýzy než s obrazem prosté deaktivace. Dále jsme našli korelaci mezi MR signálem v clusteru zadní cingulum/precuneus a kognitivním výkonem ve VFT.
The default mode network (DMN) is an organized network of brain structures involved in brain activity that may be observed in the resting state. In the course of the performance of an experimental cognitive task during functional MRI examination (fMR), these regions manifest as ?deactivations?. The main areas involved in this network are the ventromedial prefrontal cortex/anterior cingulate cortex, posterior cingulate cortex/precuneus and angular gyrus/inferior parietal cortex. In a group of 10 healthy volunteers we employed the following approaches to the detection of DMN: deactivations related to a visual spatial memory task; seed functional connectivity from the specific region of interest (cluster posterior cingulate cortex/precuneus); and independent component analysis (ICA). We then sought correlations between the MRI signal and the results of the visuo-spatial memory task and the Addenbrook cognitive examination (ACE), in concrete terms with the ACE verbal fluency subscore (VFT), and memory. The ICA approach revealed a higher correlation rate with the results from functional connectivity compared with pure deactivation mapping. We found correlation between MRI signal in the cluster posterior cingulate cortex/precuneus and VFT performance.
Familiárna hypercholesterolémia (FH) je monogénové autosómovo dominantne dedičné ochorenie, ktoré je charakterizované vysokou hladinou celkového a LDL-cholesterolu a vysokým rizikom aterosklerózou podmienených kardiovaskulárnych ochorení (ASKVO). Na stanovenie klinickej diagnózy FH sa najčastejšie používa Dutch Lipid Clinic Network Score (DLNC), ktoré je na Slovensku predpokladom pre DNA-analýzu FH. Cieľom našej štúdie bolo ukázať ako koreluje klinická diagnóza FH na základe DLNC s DNA-analýzou génov pre LDL-receptory, APOB a PCSK9. Zamerali sme sa na nepríbuzných jedincov (probandov). Kompletné údaje DNA-analýzy, klinického a biochemického vyšetrenia boli u 182 probandov. Porovnávali sa pacienti s primárnou hypercholesterolémiou, ktorí mali na základe skóre DLNC istú FH (defFH) alebo pravdepodobnú (probable)/možnú (possible) FH (pFH). LDL-receptory a gény APOB a PCSK9 sa analyzovali metódou next generation sequencing. 102 probandov bolo zaradených do skupiny defFH a 89 do skupiny pFH. Pacienti s defFH boli mladší, mali štatisticky významne vyšší výskyt xantomatózy, vyššiu hladinu celkového cholesterolu a LDL-cholesterolu ako pacienti v skupine pFH (p < 0,001,resp). Nezistili sme rozdiel vo výskyte ASKVO v osobnej ani rodinnej anamnéze. 72,5 % pacientov s klinickou diagnózou defFH malo potvrdenú mutáciu v génoch pre LDL-receptory alebo APOB, kým v skupine pFH to bolo 25,8 % (p < 0,001). Tento štatisticky významný rozdiel bol spojený s významne vyššou prevalenciou mutácií v géne pre LDL-receptor (60,8 % vs 14,6 %; p < 0,001). Prevalencia mutácií v géne APOB sa medzi oboma skupinami nelíšila (11,8 % vs 10,1 %, ns). Ani u jedného pacienta sa nezistil patologický variant v géne PCSK9. Ukázali sme, že v projekte MED-PED predstavuje DLNC efektívne kritérium pre diagnózu FH. Dá sa predpokladať, že v kombinácii s univerzálnym skríningom FH u detí by sa mohol významne zlepšiť záchyt monogénovej FH, a tým aj efektívna primárna prevencia včasných kardiovaskulárnych príhod.
Familial hypercholesterolemia (FH) is a monogenic autosomal dominant disease, which is characterized by a high level of total and LDL-cholesterol and a high risk of atherosclerosis-related cardiovascular diseases (ASCVD). To determine the clinical diagnosis of FH, the Dutch Lipid Clinic Network Score (DLNC) is most often used, which is a prerequisite for DNA analysis of FH in Slovakia. The aim of our study was to show how the clinical diagnosis of FH based on DLNC correlates with DNA analysis of genes for LDL-receptors, APOB and PCSK9. We focused on unrelated individuals – probands. Complete data of DNA analysis, clinical and biochemical examination were available for 182 probands. Patients with primary hypercholesterolemia who had definite FH (defFH) or probable/possible FH (pFH) based on the DLNC score were compared. LDL-receptors, ApoB and PCSK9 genes were analyzed by the next generation sequencing. 102 probands were assigned to the defFH group and 89 to the pFH group. Patients with defFH were younger, had a statistically significantly higher incidence of xanthomatosis, higher levels of total cholesterol and LDL-cholesterol than patients in the pFH group (p < 0.001, resp.). We did not find a difference in the incidence of ASCVD in personal or family history. 72.5 % of patients with a clinical diagnosis of defFH had a confirmed mutation in the genes for LDL-receptors or APOB, while in the pFH group it was 25.8 % (p < 0.001). This statistically significant difference was associated with a significantly higher prevalence of mutations in the LDL-receptor gene (60.8 % vs 14.6 %; p < 0.001). The prevalence of mutations in the APOB gene did not differ between the two groups (11.8 % vs 10.1 %, ns). Not a single patient was found to have a pathological variant in the PCSK9 gene. We have shown that in the MED-PED project, DLNC is an effective criterion for the diagnosis of FH. It can be assumed that, in combination with universal FH screening in children, the detection of monogenic FH could be significantly improved and thus the effective primary prevention of early cardiovascular events.
- Klíčová slova
- Dutch Lipid Clinic Network Score, DLNC,
- MeSH
- dospělí MeSH
- familiární kombinovaná hyperlipidemie * diagnóza genetika MeSH
- genetické techniky MeSH
- lidé středního věku MeSH
- lidé MeSH
- statistika jako téma MeSH
- ukazatele zdravotního stavu * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
-- VENUE -14 -- LIST OF SPEAKERS 15 -- THE VISION, MISSION AND VALUES OF THE YOUNG PSYCHIATRISTS’ NETWORK .16 -- HISTORY 17 -- DESCRIPTION OF ACTIVITIES 22 -- YOUNG PSYCHIATRISTS NETWORK BOARD 24 -- ABSTRACTS Quattrone . 36 Consumption of psychoactive substances and behavioural addictions among teenagers: analysis
79 stran ; 21 cm
- MeSH
- duševní poruchy MeSH
- psychiatrie trendy MeSH
- Publikační typ
- abstrakty MeSH
- kongresy MeSH
- Konspekt
- Psychiatrie
- NLK Obory
- psychiatrie
OBJECTIVE: To perform a network meta-analysis of randomised controlled trials of different surfactant treatment strategies for respiratory distress syndrome (RDS) to assess if a certain fraction of inspired oxygen (FiO2) is optimal for selective surfactant therapy. DESIGN: Systematic review and network meta-analysis using Bayesian analysis of randomised trials of prophylactic versus selective surfactant for RDS. SETTING: Cochrane Central Register of Controlled Trials, MEDLINE, Embase and Science Citation Index Expanded. PATIENTS: Randomised trials including infants under 32 weeks of gestational age. INTERVENTIONS: Intratracheal surfactant, irrespective of type or dose. MAIN OUTCOME MEASURES: Our primary outcome was neonatal mortality, compared between groups treated with selective surfactant therapy at different thresholds of FiO2. Secondary outcomes included respiratory morbidity and major complications of prematurity. RESULTS: Of 4643 identified references, 14 studies involving 5298 participants were included. We found no statistically significant differences between 30%, 40% and 50% FiO2 thresholds. A sensitivity analysis of infants treated in the era of high antenatal steroid use and nasal continuous positive airway pressure as initial mode of respiratory support showed no difference in mortality, RDS or intraventricular haemorrhage alone but suggested an increase in the combined outcome of major morbidities in the 60% threshold. CONCLUSION: Our results do not show a clear benefit of surfactant treatment at any threshold of FiO2. The 60% threshold was suggestive of increased morbidity. There was no advantage seen with prophylactic treatment. Randomised trials of different thresholds for surfactant delivery are urgently needed to guide clinicians and provide robust evidence. PROSPERO REGISTRATION NUMBER: CRD42020166620.
- MeSH
- Bayesova věta MeSH
- lidé MeSH
- novorozenec nedonošený MeSH
- novorozenec MeSH
- plicní surfaktanty * terapeutické užití MeSH
- povrchově aktivní látky MeSH
- síťová metaanalýza MeSH
- syndrom respirační tísně novorozenců * farmakoterapie prevence a kontrola MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
Cieľom príspevku je priblíženie metódy sieťovej analýzy, ktorá sa líši oproti tradičným metódam používaných v psychopatologickom výskume založených na predpoklade latentných premenných. Porucha je podľa klasických prístupov modelovaná ako spoločná príčina (common cause), ktorá je v pozadí (latent variable) pozorovaných symptómov. Z pohľadu sieťovej analýzy sa symptómy duševných porúch navzájom ovplyvňujú a vytvárajú komplexné dynamické siete. Autori na príklade údajov z epidemiologickej štúdie ilustrujú vzťahy medzi symptómami depresie, pričom sa zameriavajú na rôzne miery centrality symptómov a taktiež na ich vzájomné vzťahy. Možné implikácie využitia sieťovej analýzy v psychopatologickom výskume sú diskutované.
The aim of the article is to introduce the network analysis as a different method compared to traditional methods used in psychopathological research which are based on the assumption of latent variables. In latent variable approach, disorders are modeled as a common cause of observed symptoms. From network analyses perspective, symptoms of mental disorders mutually influence each other and form complex dynamic networks. Authors presented results of network analysis based on data from epidemiological study. Associations between depression symptoms are presented. Measures of centrality of symptoms are stressed and discussed. Possible implications of using of network analysis in psychopathological research are discussed.
- Klíčová slova
- síťová analýza,
- MeSH
- depresivní poruchy * diagnóza psychologie MeSH
- dospělí MeSH
- interpretace statistických dat MeSH
- kauzalita MeSH
- lidé středního věku MeSH
- lidé MeSH
- psychiatrické posuzovací škály MeSH
- psychologické modely MeSH
- psychometrie MeSH
- senioři MeSH
- určení symptomu * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
Automated analysis of small and optically variable plant organs, such as grain spikes, is highly demanded in quantitative plant science and breeding. Previous works primarily focused on the detection of prominently visible spikes emerging on the top of the grain plants growing in field conditions. However, accurate and automated analysis of all fully and partially visible spikes in greenhouse images renders a more challenging task, which was rarely addressed in the past. A particular difficulty for image analysis is represented by leaf-covered, occluded but also matured spikes of bushy crop cultivars that can hardly be differentiated from the remaining plant biomass. To address the challenge of automated analysis of arbitrary spike phenotypes in different grain crops and optical setups, here, we performed a comparative investigation of six neural network methods for pattern detection and segmentation in RGB images, including five deep and one shallow neural network. Our experimental results demonstrate that advanced deep learning methods show superior performance, achieving over 90% accuracy by detection and segmentation of spikes in wheat, barley and rye images. However, spike detection in new crop phenotypes can be performed more accurately than segmentation. Furthermore, the detection and segmentation of matured, partially visible and occluded spikes, for which phenotypes substantially deviate from the training set of regular spikes, still represent a challenge to neural network models trained on a limited set of a few hundreds of manually labeled ground truth images. Limitations and further potential improvements of the presented algorithmic frameworks for spike image analysis are discussed. Besides theoretical and experimental investigations, we provide a GUI-based tool (SpikeApp), which shows the application of pre-trained neural networks to fully automate spike detection, segmentation and phenotyping in images of greenhouse-grown plants.