Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25517902
PubMed Central
PMC4269461
DOI
10.1371/journal.pone.0114143
PII: PONE-D-14-36114
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- cirkadiánní rytmus MeSH
- fotoperioda MeSH
- Lynx fyziologie MeSH
- stárnutí účinky záření MeSH
- světlo * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The activity patterns of most terrestrial animals are regarded as being primarily influenced by light, although other factors, such as sexual cycle and climatic conditions, can modify the underlying patterns. However, most activity studies have been limited to a single study area, which in turn limit the variability of light conditions and other factors. Here we considered a range of variables that might potentially influence the activity of a large carnivore, the Eurasian lynx, in a network of studies conducted with identical methodology in different areas spanning latitudes from 49°7'N in central Europe to 70°00'N in northern Scandinavia. The variables considered both light conditions, ranging from a day with a complete day-night cycle to polar night and polar day, as well as individual traits of the animals. We analysed activity data of 38 individual free-ranging lynx equipped with GPS-collars with acceleration sensors, covering more than 11,000 lynx days. Mixed linear additive models revealed that the lynx activity level was not influenced by the daily daylight duration and the activity pattern was bimodal, even during polar night and polar day. The duration of the active phase of the activity cycle varied with the widening and narrowing of the photoperiod. Activity varied significantly with moonlight. Among adults, males were more active than females, and subadult lynx were more active than adults. In polar regions, the amplitude of the lynx daily activity pattern was low, likely as a result of the polycyclic activity pattern of their main prey, reindeer. At lower latitudes, the basic lynx activity pattern peaked during twilight, corresponding to the crepuscular activity pattern of the main prey, roe deer. Our results indicated that the basic activity of lynx is independent of light conditions, but is modified by both individual traits and the activity pattern of the locally most important prey.
Mammal Research Institute Polish Academy of Sciences Białowieża Poland
Norwegian Institute for Nature Research Trondheim Norway
University of Ljubljana Biotechnical Faculty Ljubljana Slovenia
Zobrazit více v PubMed
Aschoff J (1954) Zeitgeber der tierischen Tagesperiodik. Naturwissenschaften 41:49–56.
Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annual review of physiology 72:517–549. PubMed
Manfredi C, Lucherini M, Soler L, Baglioni J, Vidal EL, et al. (2011) Activity and movement patterns of Geoffroy's cat in the grasslands of Argentina. Mammalian Biology-Zeitschrift für Säugetierkunde 76:313–319.
Beltrán JF, Delibes M (1994) Environmental determinants of circadian activity of free-ranging Iberian lynxes. Journal of Mammalogy: 382–393.
Davidson AJ, Menaker M (2003) Birds of a feather clock together–sometimes: social synchronization of circadian rhythms. Current opinion in neurobiology 13:765–769. PubMed
Daan S, Aschoff J (2001) The entrainment of circadian systems. Circadian Clocks: Springer. pp. 7–43.
Lucherini M, Reppucci JI, Walker RS, Villalba ML, Wurstten A, et al. (2009) Activity pattern segregation of carnivores in the high Andes. Journal of Mammalogy 90:1404–1409.
Ale SB, Brown JS (2009) Prey behavior leads to predator: a case study of the Himalayan tahr and the snow leopard in Sagarmatha (Mt. Everest) National Park, Nepal. Israel Journal of Ecology & Evolution: 315–327.
Theuerkauf J, Rouys S (2008) Habitat selection by ungulates in relation to predation risk by wolves and humans in Białowieża Forest, Poland. Forest Ecology and Management 256:1325–1332.
Theuerkauf J, Jedrzejewski W, Schmidt K, Okarma H, Ruczynski I, et al. (2003) Daily patterns and duration of wolf activity in the Bialowieza Forest, Poland. Journal of Mammalogy 84:243–253.
Kitchener A (1991) The natural history of the wild cats: Comstock Pub. Associates.
Sunquist ME, Sunquist F (2002) Wild cats of the world: University of Chicago Press.
Wilson DE, Mittermeier RA, Del Hoyo J, Cavallini P, International C, et al. (2009) Handbook of the Mammals of the World: Carnivores: Lynx.
Schmidt K (1999) Variation in daily activity of the free-living Eurasian lynx (Lynx lynx) in Bialowieza Primeval Forest, Poland. Journal of Zoology, London 249:417–425.
Podolski I, Belotti E, Bufka L, Reulen H, Heurich M (2013) Seasonal and daily activity patterns of free-living Eurasian lynx Lynx lynx in relation to availability of kills. Wildlife Biology 19:69–77.
Curio E (1976) The ethology of predation: Springer-Verlag Berlin.
Gerkema MP, Davies WI, Foster RG, Menaker M, Hut RA (2013) The nocturnal bottleneck and the evolution of activity patterns in mammals. Proceedings of the Royal Society B: Biological Sciences 280. PubMed PMC
Harmsen BJ, Foster RJ, Silver SC, Ostro LE, Doncaster C (2011) Jaguar and puma activity patterns in relation to their main prey. Mammalian Biology-Zeitschrift für Säugetierkunde 76:320–324.
Schaller GB (1972) The Serengeti lion: a study of predator–prey relations. Wildlife behavior and ecology series. University of Chicago Press, Chicago, Illinois, USA.
Reinhardt I, Halle S (1999) Time of activity of a female free-ranging lynx (Lynx lynx) with young kittens in Slovenia. Zeitschrift für Säugetierkunde 64:65–75.
Mattisson J, Andrén H, Persson J, Segerström P (2010) Effects of species behavior on Global Positioning System collar fix rates. Journal of Wildlife Management 74:557–563.
Jedrzejewski W, Schmidt K, Okarma H, Kowalczyk R (2002) Movement pattern and home range use by the Eurasian lynx in Bialowieza Primeval Forest (Poland). Ann Zool Fennici 39:29–41.
Krofel M, Skrbinšek T, Kos I (2013) Use of GPS location clusters analysis to study predation, feeding, and maternal behavior of the Eurasian lynx. Ecological research 28:103–116.
Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecology Letters 12:970–981. PubMed
van Oort BE, Tyler NJ, Gerkema MP, Folkow L, Blix AS, et al. (2005) Circadian organization in reindeer. Nature 438:1095–1096. PubMed
Bowden J, Church B (1973) The influence of moonlight on catches of insects in light-traps in Africa. Part II. The effect of moon phase on light-trap catches. Bulletin of entomological research 63:129–142.
Packer C, Swanson A, Ikanda D, Kushnir H (2011) Fear of Darkness, the Full Moon and the Nocturnal Ecology of African Lions. PLoS ONE 6:e22285. PubMed PMC
Rockhill AP, DePerno CS, Powell RA (2013) The Effect of Illumination and Time of Day on Movements of Bobcats (Lynx rufus). PLoS ONE 8:e69213. PubMed PMC
Arnemo JM, Ahlqvist P, Andersen R, Berntsen F, Ericsson G, et al. (2006) Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildlife Biology 12:109–113.
Arnemo JM, Evans A, Fahlman Å (2011) Biomedical Protocol for Free-Ranging Brown Bears, Gray Wolves, Wolverines and Lynx. Hedmark University College, Evenstad, Norway and Swedish University of Agricultural Sciences, Umeå, Sweden.
Heurich M (2011) Berücksichtigung von Tierschutzaspekten beim Fang und der Markierung von Wildtieren. 12 Internationale Fachtagung zu Fragen von Verhaltenskunde, Tierhaltung und Tierschutz. Munich. pp. 142–158.
Krop-Benesch A, Berger A, Streich J, Scheibe K (2011) Activity Pattern. Users Manual. Berlin: Vectronic Aerospace. pp. 139.
Löttker P, Rummel A, Traube M, Stache A, Šustr P, et al. (2009) New possibilities of observing animal behaviour from distance using activity sensors in GPS-collars - An attempt to calibrate remotely collected activity data with direct behavioural observations in red deer. Wildlife Biology 15:425–434.
Krop-Benesch A, Berger A, Hofer H, Heurich M (2012) Long-term measurement of roe deer (Capreolus capreolus) (Mammalia: Cervidae) activity using two-axis accelerometers in GPS-collars. Italian Journal of Zoology 80:1–13.
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology & evolution 24:127–135. PubMed
Fahrmeir L, Kneib T, Lang S, Marx B (2013) Regression: Models, Methods and Applications: Springer.
R Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Lu W, Meng Q-J, Tyler NJ, Stokkan K-A, Loudon AS (2010) A circadian clock is not required in an arctic mammal. Current Biology 20:533–537. PubMed
Kolbe JA, Squires JR (2007) Circadian Activity Patterns of Canada Lynx in Western Montana. Journal of Wildlife Management 71:1607–1611.
Tigas LA, Van Vuren DH, Sauvajot RM (2002) Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biological Conservation 108:299–306.
Beltrán J (1988) Ecología y conducta espacio-temporal del lince ibérico, Lynx pardina Temminck, 1824, en el Parque Nacional de Doñana. PhD thesisUniversity of Seville.
Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. Journal of Zoology 284:224–229.
Cederlund G (1989) Activity patterns in moose and roe deer in a north boreal forest. Holarctic Ecology 12:39–45.
Georgii B, Schröder W (1983) Home range and activity patterns of male red deer (Cervus elaphus L.) in the Alps. Oecologia 58:238–248. PubMed
Pagon N, Grignolio S, Pipia A, Bongi P, Bertolucci C, et al. (2013) Seasonal variation of activity patterns in roe deer in a temperate forested area. Chronobiology international: 1–14. PubMed
Kamler JF, Jedrzejewska B, Jedrzejewski W (2007) Activity patterns of red deer in Bialowieza National Park, Poland. Journal of Mammalogy 88:508–514.
Loe L, Bonenfant C, Mysterud A, Severinsen T, Øritsland N, et al. (2007) Activity pattern of arctic reindeer in a predator-free environment: no need to keep a daily rhythm. Oecologia 152:617–624. PubMed
Berger J (2007) Fear, human shields and the redistribution of prey and predators in protected areas. Biology Letters 3:620–623. PubMed PMC
Hebblewhite M, White CA, Nietvelt CG, McKenzie JA, Hurd TE, et al. (2005) Human activity mediates a trophic cascade caused by wolves. Ecology 86:2135–2144.
Ripple WJ, Beschta RL (2006) Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biological Conservation 133:397–408.
Muhly TB, Semeniuk C, Massolo A, Hickman L, Musiani M (2011) Human activity helps prey win the predator-prey space race. PLoS ONE 6:e17050. PubMed PMC
Andrén H, Linnell JDC, Liberg O, Andersen R, Danell A, et al. (2006) Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biological Conservation 131:23–32.
Wölfl M, Bufka L, Červený J, Koubek P, Heurich M, et al. (2001) Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriologica 46:181–194.
Schmidt K (2008) Behavioural and spatial adaptation of the Eurasian lynx to a decline in prey availability. Acta Theriologica 53:1–16.
Broekhuis F, Grünewälder S, McNutt JW, Macdonald DW (2014) Optimal hunting conditions drive circalunar behavior of a diurnal carnivore. Behavioral Ecology 25:1268–1275.
Orsdol KG (1984) Foraging behaviour and hunting success of lions in Queen Elizabeth National Park, Uganda. African Journal of Ecology 22:79–99.
Schmidt K, Jedrzejewski W, Okarma H (1997) Spatial organization and social relations in the Eurasian lynx population in Bialowieza Primeval Forest, Poland. Acta Theriologica 42:289–312.
Mattisson JMJ, Persson JPJ, Andrén HAH, Segerström PSP (2011) Temporal and spatial interactions between an obligate predator, the Eurasian lynx (Lynx lynx), and a facultative scavenger, the wolverine (Gulo gulo). Canadian Journal of Zoology 89:79–89.
Beier P, Choate D, Barrett RH (1995) Movement patterns of mountain lions during different behaviors. Journal of Mammalogy: 1056–1070.
Okarma H, Jedrzejewski W, Schmidt K, Kowalczyk R, Jedrzejewska B (1997) Predation of Eurasian lynx on roe deer and red deer in Bialowieza Primeval Forest, Poland. Acta Theriologica 42:203–224.
Mattisson J, Odden J, Nilsen EB, Linnell JDC, Persson J, et al. (2011) Factors affecting Eurasian lynx kill rates on semi-domestic reindeer in northern Scandinavia: Can ecological research contribute to the development of a fair compensation system? Biological conservation.
Krofel M, Jerina K, Kljun F, Kos I, Potočnik H, et al. (2014) Comparing patterns of human harvest and predation by Eurasian lynx Lynx lynx on European roe deer Capreolus capreolus in a temperate forest. European Journal of Wildlife Research 60:11–21.
Molinari-Jobin A, Molinari P, Breitenmoser-Würsten C, Breitenmoser U (2002) Significance of lynx Lynx lynx predation for roe deer Capreolus capreolus and chamois Rupicapra rupicapra mortality in Swiss Jura moutains. Wildlife Biology 8:109–115.
Samelius G, Andrén H, Liberg O, Linnell JDC, Odden J, et al. (2012) Spatial and temporal variation in natal dispersal by Eurasian lynx in Scandinavia. Journal of Zoology 286:120–130.
Hayward MW, Slotow R (2009) Temporal Partitioning of Activity in Large African Carnivores: Tests of Multiple Hypotheses. South African Journal of Wildlife Research 39:109–125.
Palomares F, Delibes M (1988) Time and space use by two common genets (Genetta genetta) in the Doñana National Park, Spain. Journal of Mammalogy 69:635–637.
Zimmermann F, Breitenmoser-Würsten C, Breitenmoser U (2007) Importance of dispersal for the expansion of a Eurasian lynx Lynx lynx population in a fragmented landscape. Oryx 41:358–368.
Breitenmoser U, Breitenmoser-Würsten C (2008) Der Luchs - Ein Großraubtier in der Kulturlandschaft. Wohlen/Bern: Salm Verlag. 537 p.
Wölfl M, Wölfl S (1996) An observation of aggressive physical interaction between free-ranging lynx. Acta Theriologica 41:443–431.
Vogt K, Zimmermann F, Kölliker M, Breitenmoser U (2014) Scent-marking behaviour and social dynamics in a wild population of Eurasian lynx< i> Lynx lynx</i>. Behavioural processes 106:98–106. PubMed
Guillet C, Bergström R, Cederlund G (1996) Size of winter home range of roe deer Capreolus capreolus in two forest areas with artificial feeding in Sweden. Wildlife Biology 2:107–111.
Ray R-R, Seibold H, Heurich M (2014) Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Animal Biodiversity and Conservation 37:77–88.
Krofel M, Kos I, Jerina K (2012) The noble cats and the big bad scavengers: effects of dominant scavengers on solitary predators. Behavioral Ecology and Sociobiology 66:1297–1304.
Herfindal I, Linnell J, Odden J, Birkeland Nilsen E, Andersen R (2005) Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx). Journal of Zoology 265:63–71.
Linnell J, Broseth H, Odden J, Nilsen E (2010) Sustainably Harvesting a Large Carnivore? Development of Eurasian Lynx Populations in Norway During 160 Years of Shifting Policy. Environmental Management 45:1142–1154. PubMed