Factors shaping home ranges of Eurasian lynx (Lynx lynx) in the Western Carpathians

. 2024 Sep 16 ; 14 (1) : 21600. [epub] 20240916

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39284845

Grantová podpora
LIFE13 NAT/DE/000755 EU Structural Funds and the Cohesion Fund
No. ITMS 310011L489 the Operational Programme Quality of Environment
FOMON No. ITMS 313011V465 the Operational Programme Integrated Infrastructure
Centre of Excellence No. ITMS 26220120006 the Operational Programme Research and Development (European Regional Development Fund)
LIFE16 NAT/SI/000634 the Ministry of the Environment of the Slovak Republic
No. 9028766 Operational Programme Environment via State Environmental Fund of the Czech Republic and by the Nature Conservation Agency of the Czech Republic
INTERREG V-A SK-CZ 304021D016 the European Regional Development Fund, the Cross-border Cooperation Program Slovak Republic - Czech Republic 2014 - 2020
No. CZ.05.4.27/0.0/0.0/20_139/0012815 the Operational Programme Environment
No. DTP3-314-2.3 the Danube Transnational Programme

Odkazy

PubMed 39284845
PubMed Central PMC11405725
DOI 10.1038/s41598-024-71800-w
PII: 10.1038/s41598-024-71800-w
Knihovny.cz E-zdroje

Understanding how large carnivores utilize space is crucial for management planning in human-dominated landscape and enhances the accuracy of population size estimates. However, Eurasian lynx display a large inter-population variation in the size of home ranges across their European range which makes extrapolation to broader areas of a species distribution problematic. This study evaluates variations in home range size for 35 Eurasian lynx in the Western Carpathians during 2011-2022 based on GPS telemetry and explains how intrinsic and environmental factors shape lynx spatial behaviour when facing anthropogenic pressure. The average annual home range size of lynx ranged from 283 (± 42 SE) to 360 (± 60 SE) km2 for males and from 148 (± 50 SE) to 190 (± 70 SE) km2 for females, depending on home range estimator (95% MCP, KDE and AKDE). Females with kittens had smaller annual and summer home ranges compared to non-reproducing females and subadults had smaller home ranges compared to adults. Lynx home range size was explained by availability of roe deer, except for summer, when alternative prey was likely available. We also found clear evidence of human-induced changes in lynx home range size, in particular, forest cover significantly decreased the home range size of male lynx during summer while road density led to an expansion of both annual and summer lynx home ranges. Lynx exhibited consistent fidelity to their home ranges throughout consecutive seasons, showing no seasonal variations. Strong territoriality was observed among competing males maintaining relatively low home range overlaps and considerable distances between centres of activity. The most pronounced tendency for association was observed between males and females, maintaining relatively close proximity year-round. The insights into lynx spatial requirements provided by our study will greatly enhance the accuracy of population size estimates and effectiveness of mitigation measures across the Western Carpathians.

Association for Nature Wolf Cynkowa 4 34 324 Twardorzeczka Poland

Carpathian Wildlife Society Námestie Slobody 19 960 01 Zvolen Slovakia

Department of Applied Zoology and Wildlife Management Faculty of Forestry Technical University in Zvolen T G Masaryka 24 960 01 Zvolen Slovakia

Department of Ecology Biological and Chemical Research Centre Faculty of Biology Institute of Functional Biology and Ecology University of Warsaw Żwierki i Wigury 101 02 089 Warszawa Poland

Department of Forest Ecology Faculty of Forestry and Wood Technology Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic

Department of Phytology Faculty of Forestry Technical University in Zvolen T G Masaryka 24 960 01 Zvolen Slovakia

Department of Zoology Fisheries Hydrobiology and Apiculture Faculty of AgriSciences Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic

DIANA Carpathian Wildlife Research Centre Mládežnícka 47 974 04 Banská Bystrica Slovakia

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcká 1070 165 00 Prague Suchdol Czech Republic

Friends of the Earth Czech Republic Carnivore Conservation Programme Dolní náměstí 38 77900 Olomouc Czech Republic

Institute of Animal Husbandry Faculty of Agrobiology and Food Resources Slovak University of Agriculture Tr A Hlinku 2 949 76 Nitra Slovakia

Institute of Vertebrate Biology of the Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic

Muránska Planina National Park with Headquarters in Revúca Ul Janka Kráľa 12 050 01 Revúca Slovakia

National Forest Centre Forest Research Institute T G Masaryka 2175 22 960 01 Zvolen Slovakia

National Zoological Garden Bojnice Zámok a Okolie 939 6 972 01 Bojnice Slovakia

State Nature Conservancy of Slovak Republic Landscape Area Strážov Mountains Administration Orlové 189 017 01 Považská Bystrica Slovakia

State Nature Conservancy of the Slovak Republic Tajovského 28B 974 01 Banská Bystrica Slovakia

Wildlife Science Faculty of Forest Science and Forest Ecology University of Goettingen Büsgenweg 5 37077 Göttingen Germany

Zobrazit více v PubMed

Linnell, J. D. C., Mattisson, J. & Odden, J. Extreme home range sizes among Eurasian lynx at the northern edge of their biogeographic range. Nat. Ecol. Evol.11, 10. 10.1002/ece3.74365001-5009 (2021). PubMed PMC

Linnell, J. D. C. et al. Home range size and choice of management strategy for lynx in Scandinavia. J. Environ. Manag.27, 869–879 (2001). PubMed

Herfindal, I., Linnell, J. D. C., Odden, J., Nilsen, E. B. & Andersen, R. Prey density, environmental productivity, and home range size in the Eurasian lynx (Lynx lynx). J. Zool.265, 63–71 (2005).

Palmero, S., Premier, J., Kramer-Schadt, S., Monterroso, P. & Heurich, M. Sampling variables and their thresholds for the precise estimation of wild felid population density with camera traps and spatial capture–recapture methods. Mam. Rev.53, 223–237 (2023).

Breitenmoser-Würsten, C. et al. Spatial and social stability of a Eurasian lynx Lynx lynx population: An assessment of 10 years of observation in the Jura Mountains. Wildl. Biol.13, 365–380 (2007).

Schmidt, K., Jędrzejewski, W. & Okarma, H. Spatial organization and social relations in the Eurasian lynx population in Bialowieza Primeval Forest, Poland. Acta Theriol.42, 289–312 (1997).

Breitenmoser, U. & Breitenmoser-Würsten, C. D. Luchs—ein Grossraubtier in der Kulturlandschaft (Salm Verlag, 2008).

von Arx, M. The IUCN red list of threatened species: Lynx lynx (Europe assessment) (amended version of 2018 assessment). 10.2305/IUCN.UK.2020-3.RLTS.T12519A177350310.en (2020).

Melovski, D. et al. First insight into the spatial and foraging ecology of the critically endangered Balkan lynx (Lynx lynx balcanicus, Buresh 1941). Hystrix31, 26–34 (2020).

Sunde, P., Kvam, T., Moa, P., Negard, A. & Overskaug, K. Space use by Eurasian lynxes Lynx lynx in central Norway. Acta Theriol.45, 507–524 (2000).

Aronsson, M. et al. Intensity of space use reveals conditional sex-specific effects of prey and conspecific density on home range size. Nat. Ecol. Evol.6, 2957–2967 (2016). PubMed PMC

Pesenti, E. & Zimmermann, F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal.94, 73–81 (2013).

Ripari, L. et al. Human disturbance is the most limiting factor driving habitat selection of a large carnivore throughout Continental Europe. Biol. Conserv.266, 109446 (2022).

Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Importance of dispersal for the expansion of a Eurasian lynx Lynx lynx population in a fragmented landscape. Oryx41, 358–368 (2007).

Breitenmoser-Würsten, C. et al. Untersuchungen zur Luchspopulation in den Nordwestalpen der Schweiz 1997–2000. KORA Beicht9, 1–88 (2001).

Ryser, A. et al. Luchsumsiedlung Nordostschweiz 2001–2003, Schlussbericht Modul Luchs des Projektes LUNO. KORA Bericht22, 1–60 (2004).

Basille, M. et al. Selecting habitat to survive: The impact of road density on survival in a large carnivore. PloS One8, e65493. 10.1371/journal.pone.0065493 (2013). PubMed PMC

Gehr, B. et al. landscape of coexistence for a large predator in a human dominated landscape. Oikos126, 1389–1399 (2017).

Kramer-Schadt, S., Revilla, E., Wiegand, T. & Breitenmoser, U. Fragmented landscapes, road mortality and patch connectivity: Modelling influences on the dispersal of Eurasian lynx. J. Appl. Ecol41, 711–723 (2004).

Andrén, H. & Liberg, O. Numerical response of predator to prey: dynamic interactions and population cycles in Eurasian Lynx and roe deer. Ecol. Monogr.94, e1594. 10.1002/ecm.1594 (2024).

Filla, M. et al. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night. Ecol. Evol.7, 6367–6381 (2017). PubMed PMC

Basille, M. et al. What shapes Eurasian lynx distribution in human dominated landscapes: Selecting prey or avoiding people?. Ecography32, 683–691 (2009).

European Copernicus Programme. CORINE Land Cover 2018. https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (2023).

Bazzicalupo, E. et al. History, demography and genetic status of Balkan and Caucasian Lynx lynx (Linnaeus, 1758) populations revealed by genome-wide variation. Divers. Distrib.28, 65–82 (2022).

Lucena-Perez, M. et al. Ancient genome provides insights into the history of Eurasian lynx in Iberia and Western Europe. Quat. Sci. Rev.285, 107518. 10.1016/j.quascirev.2022.107518 (2022).

Duľa, M. et al. Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range. Sci. Rep.11, 9236. 10.1038/s41598-021-88348-8 (2021). PubMed PMC

Kubala, J. et al. Conservation needs of the Carpathian lynx population. CATnews Spec. Iss.14, 12–15 (2021).

Niedziałkowska, M. et al. Environmental correlates of Eurasian lynx occurrence in Poland—Large scale census and GIS mapping. Biol. Conserv.133, 63–69 (2006).

Jędrzejewski, W., Nowak, S., Schmidt, K. & Jędrzejewska, B. The wolf and the lynx in Poland—results of a census conducted in 2001. Kosmos51, 491–499 (2002).

Kubala, J. et al. Robust monitoring of the Eurasian lynx Lynx lynx in the Slovak Carpathians reveals lower numbers than officially reported. Oryx53, 548–556 (2019).

LifeLynx. Protocol for Eurasian lynx (Lynx lynx) capture, narcosis, transport, and quarantine in the Slovak Carpathians. https://www.lifelynx.eu/wp-content/uploads/2018/06/C1_Protocol-for-lynx-capture-narcosis-transport-and-quarantine-in-the-Slovak-Carpathians.pdf (2018).

Signer, S. et al. Luchsumsiedlungen aus der Schweiz von 2016–2020 in den Pfälzerwald und in die Kalkalpen. KORA Bericht100, 1–26 (2021).

Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol.10.1371/journal.pbio.3000410 (2020). PubMed PMC

Marti, I. & Ryser-Degiorgis, M. P. A tooth wear scoring scheme for age estimation of the Eurasian lynx (Lynx lynx) under field conditions. Eur. J. Wildl. Res.64, 1–13 (2018).

Marti, I. & Ryser-Degiorgis, M. P. Morphometric characteristics of free-ranging Eurasian lynx Lynx lynx in Switzerland and their suitability for age estimation. Wildl. Biol.1, 1–10 (2018).

Mohr, C. O. Table of equivalent populations of North American small mammals. Am. Midl. Nat.37, 223–249 (1947).

Worton, B. J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology70, 164–168 (1989).

Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology96, 1182–1188 (2015). PubMed

White, S., Briers, R. A., Bouyer, Y., Odden, J. & Linnell, J. D. C. Eurasian lynx natal den site and maternal home-range selection in multi-use landscapes of Norway. J. Zool.297, 87–98 (2015).

Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analysing animal relocation data as a continuous-time stochastic process. MEE7(9), 1124–1132 (2016).

Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (Amt): R package for managing tracking data and conducting habitat selection analyses. Nat. Ecol. Evol.9, 880–890 (2019). PubMed PMC

R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).

Mysterud, A. et al. Monitoring population size of red deer Cervus elaphus: An evaluation of two types of census data from Norway. Wildl. Biol.13, 285–298 (2007).

Ueno, M., Solberg, E. J., Iijima, H., Rolandsen, C. M. & Gangsei, L. E. Performance of hunting statistics as spatiotemporal density indices of moose (Alces alces) in Norway. Ecosphere5, 1–20 (2014).

ESRI. ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute (2016)

Meijer, J. R., Huijbregts, M. A. J., Schotten, C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett.13(6), 064006. 10.1088/1748-9326/aacb93 (2018).

Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat.18, 50–60 (1947).

Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).

Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag.66, 912–918 (2002).

Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J.9, 1–56 (2017).

Good, P. I. Permutation, Parametric and Bootstrap Tests of Hypotheses 3rd edn, 1–315 (Springer, 2005).

Hell, P. Der Luchs und seine Erhaltung in Europa (Schaffhausen, 1971).

Okarma, H., Śnieżko, S. & Śmietana, W. Home ranges of Eurasian lynx Lynx lynx in the Polish Carpathian Mountains. Wildl. Biol.13, 481–487 (2007).

Magg, N. et al. Habitat availability is not limiting the distribution of the Bohemian-Bavarian lynx Lynx lynx population. Oryx50(4), 742–752 (2016).

Breitenmoser, U. et al. Spatial organization and recruitment of lynx (Lynx lynx) in a re-introduced population in the Swiss Jura Mountains. J. Zool.231, 449–464 (1993).

Jędrzejewski, W., Schmidt, K., Okarma, H. & Kowalczyk, R. Movement pattern and home range use by the Eurasian lynx in Białowieża Primeval Forest (Poland). Ann. Zool. Fenn.39, 29–41 (1996).

Eisenberg, J. F. Life history strategies of the felidae: Variations on a common theme. In Cats of the World: Biology, Conservation, and Management (eds Miller, S. D. & Everett, D. D.) 293–303 (National Wildlife Federation, 1986).

Sandell, M. The mating tactics and spacing patterns of solitary carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) 164–182 (Springer, 1989).

Davies, N. B. Mating system. In Behavioural Ecology-An Evolutionary Approach 263–294 (Wiley, Hoboken, 1991).

Sunquist, M. & Sunquist, F. Wild Cats of the World (University of Chicago Press, 2017).

Walton, Z., Mattisson, J., Linnell, J. D. C., Stien, A. & Odden, J. The cost of migratory prey: seasonal changes in semi-domestic reindeer distribution influences breeding success of Eurasian lynx in northern Norway. Oikos126, 642–650 (2017).

Molinari-Jobin, A. et al. Variation in diet, prey selectivity and home-range size of Eurasian lynx Lynx lynx in Switzerland. Wildl. Biol.13, 393–405 (2007).

Danell, K., Bergström, R., Duncan, P. & Pastor, J. Large Herbivore Ecology, Ecosystem Dynamics and Conservation Vol. 11 (Cambridge University Press, 2006).

Cagnacci, F. et al. Partial migration in roe deer: Migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos120, 1790–1802 (2011).

Ramanzin, M., Sturaro, E. & Zanon, D. Seasonal migration and home range of roe deer (Capreolus capreolus) in the Italian eastern Alps. Can. J. Zool.85(2), 280–289 (2007).

Bouyer, Y. et al. Eurasian lynx habitat selection in human-modified landscape in Norway: Effects of different human habitat modifications and behavioral states. Biol. Conserv.191, 291–299 (2015).

Burdett, C. L., Moen, R. A., Niemi, G. J. & Mech, L. D. Defining space use and movements of Canada lynx with global positioning system telemetry. J. Mammal.88(2), 457–467 (2007).

O’Donoghue, M. et al. Cyclical dynamics and behaviour of Canada lynx in northern Canada. In Biology and Conservation of Wild Felids (eds Macdonald, D. W. & Loveridge, A. J.) 521–536 (Oxford, 2010).

Vashon, J. H. et al. Spatial ecology of a Canada lynx population in northern Maine. J. Wildl. Manag.72(7), 1479–1487 (2008).

Buzan, E. et al. Molecular analysis of scats revealed diet and prey choice of grey wolves and Eurasian lynx in the contact zone between the Dinaric Mountains and the Alps. Front. Zool.21, 9. 10.1186/s12983-024-00530-6 (2024). PubMed PMC

Duľa, M. et al. The first insight into hunting and feeding behaviour of the Eurasian lynx in the Western Carpathians. Mamm. Res.68, 237–242 (2023).

Mysłajek, R. W., Stachyra, P., Figura, M. & Nowak, S. Food habits of the Eurasian lynx Lynx lynx in southeast Poland. J. Vertebr. Biol.71, 1–7 (2021).

Schmidt, K. Behavioural and spatial adaptation of the Eurasian lynx to a decline in prey availability. Acta Theriol, 53, 1–16 (2008).

Arlettaz, R. et al. Poaching threatens the establishment of a lynx population, highlighting the need for a centralized judiciary approach. Front. Conserv. Sci.2, 665000. 10.3389/fcosc.2021.665000 (2021).

Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv.224, 355–365 (2018).

Van Moorter, B. et al. Memory keeps you at home: A mechanistic model for home range emergence. Oikos118(5), 641–652 (2009).

Wőlfl, M. Zur intersexuellen Konkurrenzverminderung beim Eurasischen Luchs (Lynx lynx L.) in der Schweiz (Universität München, 1993).

Kubala, J. et al. The coat pattern in the Carpathian population of Eurasian lynx has changed: A sign of demographic bottleneck and limited connectivity. Eur. J. Wildl. Res.66, 2. 10.1007/s10344-019-1338-7 (2020).

Bonn Lynx Expert Group. Recommendations for the conservation of the Eurasian lynx in Western and Central Europe. CATnews Spec. Iss.14, 78–86 (2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...