β-catenin signaling, the constitutive androstane receptor and their mutual interactions

. 2020 Dec ; 94 (12) : 3983-3991. [epub] 20201024

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33097968
Odkazy

PubMed 33097968
PubMed Central PMC7655584
DOI 10.1007/s00204-020-02935-8
PII: 10.1007/s00204-020-02935-8
Knihovny.cz E-zdroje

Aberrant signaling through β-catenin is an important determinant of tumorigenesis in rodents as well as in humans. In mice, xenobiotic activators of the constitutive androstane receptor (CAR), a chemo-sensing nuclear receptor, promote liver tumor growth by means of a non-genotoxic mechanism and, under certain conditions, select for hepatocellular tumors which contain activated β-catenin. In normal hepatocytes, interactions of β-catenin and CAR have been demonstrated with respect to the induction of proliferation and drug metabolism-related gene expression. The molecular details of these interactions are still not well understood. Recently it has been hypothesized that CAR might activate β-catenin signaling, thus providing a possible explanation for some of the observed phenomena. Nonetheless, many aspects of the molecular interplay of the two regulators have still not been elucidated. This review briefly summarizes our current knowledge about the interplay of CAR and β-catenin. By taking into account data and observations obtained with different mouse models and employing different experimental approaches, it is shown that published data also contain substantial evidence that xenobiotic activators of CAR do not activate, or do even inhibit signaling through the β-catenin pathway. The review highlights new aspects of possible ways of interaction between the two signaling cascades and will help to stimulate scientific discussion about the crosstalk of β-catenin signaling and the nuclear receptor CAR.

Zobrazit více v PubMed

Awuah PK, Rhieu BH, Singh S, Misse A, Monga SP. beta-Catenin loss in hepatocytes promotes hepatocellular cancer after diethylnitrosamine and phenobarbital administration to mice. PLoS ONE. 2012;7(6):e39771. doi: 10.1371/journal.pone.0039771. PubMed DOI PMC

Aydinlik H, Nguyen TD, Moennikes O, Buchmann A, Schwarz M. Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of beta-catenin-mutated mouse liver tumors. Oncogene. 2001;20(53):7812–7816. doi: 10.1038/sj.onc.1204982. PubMed DOI

Behrens J, Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol. 2004;48(5–6):477–487. doi: 10.1387/ijdb.041815jb. PubMed DOI

Bell AW, Michalopoulos GK. Phenobarbital regulates nuclear expression of HNF-4alpha in mouse and rat hepatocytes independent of CAR and PXR. Hepatology. 2006;44(1):186–194. doi: 10.1002/hep.21234. PubMed DOI PMC

Benhamouche S, Decaens T, Godard C, et al. Apc tumor suppressor gene is the "zonation-keeper" of mouse liver. Dev Cell. 2006;10(6):759–770. doi: 10.1016/j.devcel.2006.03.015. PubMed DOI

Berasain C, Avila MA. Deciphering liver zonation: new insights into the beta-catenin, Tcf4, and HNF4alpha triad. Hepatology. 2014;59(6):2080–2082. doi: 10.1002/hep.27000. PubMed DOI

Braeuning A, Schwarz M. beta-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver. Biol Chem. 2010;391(2–3):139–148. doi: 10.1515/BC.2010.012. PubMed DOI

Braeuning A, Ittrich C, Kohle C, et al. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006;273(22):5051–5061. doi: 10.1111/j.1742-4658.2006.05503.x. PubMed DOI

Braeuning A, Sanna R, Huelsken J, Schwarz M. Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos. 2009;37(5):1138–1145. doi: 10.1124/dmd.108.026179. PubMed DOI

Braeuning A, Singh Y, Rignall B, et al. Phenotype and growth behavior of residual beta-catenin-positive hepatocytes in livers of beta-catenin-deficient mice. Histochem Cell Biol. 2010;134(5):469–481. doi: 10.1007/s00418-010-0747-1. PubMed DOI

Braeuning A, Heubach Y, Knorpp T, et al. Gender-specific interplay of signaling through beta-catenin and CAR in the regulation of xenobiotic-induced hepatocyte proliferation. Toxicol Sci. 2011;123(1):113–122. doi: 10.1093/toxsci/kfr166. PubMed DOI

Braeuning A, Kohle C, Buchmann A, Schwarz M. Coordinate regulation of cytochrome P450 1a1 expression in mouse liver by the aryl hydrocarbon receptor and the beta-catenin pathway. Toxicol Sci. 2011;122(1):16–25. doi: 10.1093/toxsci/kfr080. PubMed DOI

Braeuning A, Gavrilov A, Geissler M, et al. Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice. Arch Toxicol. 2016 doi: 10.1007/s00204-016-1667-1. PubMed DOI

Buhler R, Lindros KO, Nordling A, Johansson I, Ingelman-Sundberg M. Zonation of cytochrome P450 isozyme expression and induction in rat liver. Eur J Biochem. 1992;204(1):407–412. doi: 10.1111/j.1432-1033.1992.tb16650.x. PubMed DOI

Burke ZD, Tosh D. The Wnt/beta-catenin pathway: master regulator of liver zonation? BioEssays. 2006;28(11):1072–1077. doi: 10.1002/bies.20485. PubMed DOI

Burke ZD, Reed KR, Phesse TJ, Sansom OJ, Clarke AR, Tosh D. Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. Gastroenterology. 2009;136(7):2316–2324. doi: 10.1053/j.gastro.2009.02.063. PubMed DOI

Colnot S, Decaens T, Niwa-Kawakita M, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA. 2004;101(49):17216–17221. doi: 10.1073/pnas.0404761101. PubMed DOI PMC

Czapinski P, Blaszczyk B, Czuczwar SJ. Mechanisms of action of antiepileptic drugs. Curr Top Med Chem. 2005;5(1):3–14. doi: 10.2174/1568026053386962. PubMed DOI

Dong B, Lee JS, Park YY, et al. Activating CAR and beta-catenin induces uncontrolled liver growth and tumorigenesis. Nat Commun. 2015;6:5944. doi: 10.1038/ncomms6944. PubMed DOI PMC

Elcombe CR, Peffer RC, Wolf DC, et al. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: a case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev Toxicol. 2014;44(1):64–82. doi: 10.3109/10408444.2013.835786. PubMed DOI PMC

Ganzenberg K, Singh Y, Braeuning A. The time point of beta-catenin knockout in hepatocytes determines their response to xenobiotic activation of the constitutive androstane receptor. Toxicology. 2013;308:113–121. doi: 10.1016/j.tox.2013.03.019. PubMed DOI

Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53(3):275–354. doi: 10.1016/0163-7258(92)90055-5. PubMed DOI

Gebhardt R, Hovhannisyan A. Organ patterning in the adult stage: the role of Wnt/beta-catenin signaling in liver zonation and beyond. Dev Dyn. 2010;239(1):45–55. doi: 10.1002/dvdy.22041. PubMed DOI

Gebhardt R, Baldysiak-Figiel A, Krugel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. Prog Histochem Cytochem. 2007;41(4):201–266. doi: 10.1016/j.proghi.2006.12.001. PubMed DOI

Giera S, Braeuning A, Kohle C, et al. Wnt/beta-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol Sci. 2010;115(1):22–33. doi: 10.1093/toxsci/kfq033. PubMed DOI

Gougelet A, Torre C, Veber P, et al. T-cell factor 4 and beta-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology. 2014;59(6):2344–2357. doi: 10.1002/hep.26924. PubMed DOI

Groll N, Petrikat T, Vetter S, et al. Coordinate regulation of Cyp2e1 by beta-catenin- and hepatocyte nuclear factor 1alpha-dependent signaling. Toxicology. 2016;350–352:40–48. doi: 10.1016/j.tox.2016.05.004. PubMed DOI

Groll N, Petrikat T, Vetter S, et al. Inhibition of beta-catenin signaling by phenobarbital in hepatoma cells in vitro. Toxicology. 2016;370:94–105. doi: 10.1016/j.tox.2016.09.018. PubMed DOI

Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M. Zonal gene expression in murine liver: lessons from tumors. Hepatology. 2006;43(3):407–414. doi: 10.1002/hep.21082. PubMed DOI

Harada N, Miyoshi H, Murai N, et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Can Res. 2002;62(7):1971–1977. PubMed

Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Can Res. 2004;64(1):48–54. doi: 10.1158/0008-5472.can-03-2123. PubMed DOI

Honkakoski P, Negishi M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J. 2000;347(Pt 2):321–337. doi: 10.1042/bj3470321. PubMed DOI PMC

Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 2017;11:622–630. doi: 10.1016/j.redox.2017.01.012. PubMed DOI PMC

Kolluri A, Ho M. The role of glypican-3 in regulating Wnt, YAP, and hedgehog in liver cancer. Front Oncol. 2019;9:708. doi: 10.3389/fonc.2019.00708. PubMed DOI PMC

Konno Y, Negishi M, Kodama S. The roles of nuclear receptors CAR and PXR in hepatic energy metabolism. Drug Metab Pharmacokinet. 2008;23(1):8–13. doi: 10.2133/dmpk.23.8. PubMed DOI

Li D, Mackowiak B, Brayman TG, et al. Genome-wide analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and CAR-knockout HepaRG cells. Biochem Pharmacol. 2015;98(1):190–202. doi: 10.1016/j.bcp.2015.08.087. PubMed DOI PMC

Lin CW, Mars WM, Paranjpe S, et al. Hepatocyte proliferation and hepatomegaly induced by phenobarbital and 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene is suppressed in hepatocyte-targeted glypican 3 transgenic mice. Hepatology. 2011;54(2):620–630. doi: 10.1002/hep.24417. PubMed DOI PMC

Loeppen S, Schneider D, Gaunitz F, et al. Overexpression of glutamine synthetase is associated with beta-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital. Can Res. 2002;62(20):5685–5688. PubMed

Luisier R, Lempiainen H, Scherbichler N, et al. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors. Toxicol Sci. 2014;139(2):501–511. doi: 10.1093/toxsci/kfu038. PubMed DOI

Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129(4):199–221. doi: 10.1007/s00432-003-0431-0. PubMed DOI

Mattu S, Saliba C, Sulas P, et al. High frequency of beta-catenin mutations in mouse hepatocellular carcinomas induced by a nongenotoxic constitutive androstane receptor agonist. Am J Pathol. 2018;188(11):2497–2507. doi: 10.1016/j.ajpath.2018.07.022. PubMed DOI

Molnar F, Kublbeck J, Jyrkkarinne J, Prantner V, Honkakoski P. An update on the constitutive androstane receptor (CAR) Drug Metab Drug Interact. 2013;28(2):79–93. doi: 10.1515/dmdi-2013-0009. PubMed DOI

Mutoh S, Sobhany M, Moore R, et al. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci Signal. 2013;6(274):ra31. doi: 10.1126/scisignal.2003705. PubMed DOI PMC

Oinonen T, Lindros KO. Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J. 1998;329(Pt 1):17–35. doi: 10.1042/bj3290017. PubMed DOI PMC

Park SY, Kim D, Kee SH. Metformin-activated AMPK regulates beta-catenin to reduce cell proliferation in colon carcinoma RKO cells. Oncol Lett. 2019;17(3):2695–2702. doi: 10.3892/ol.2019.9892. PubMed DOI PMC

Raskov H, Pommergaard HC, Burcharth J, Rosenberg J. Colorectal carcinogenesis–update and perspectives. World J Gastroenterol. 2014;20(48):18151–18164. doi: 10.3748/wjg.v20.i48.18151. PubMed DOI PMC

Rignall B, Braeuning A, Buchmann A, Schwarz M. Tumor formation in liver of conditional beta-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen. Carcinogenesis. 2011;32(1):52–57. doi: 10.1093/carcin/bgq226. PubMed DOI

Schreiber S, Rignall B, Braeuning A, et al. Phenotype of single hepatocytes expressing an activated version of beta-catenin in liver of transgenic mice. J Mol Histol. 2011;42(5):393–400. doi: 10.1007/s10735-011-9342-6. PubMed DOI

Schulthess P, Loffler A, Vetter S, et al. Signal integration by the CYP1A1 promoter–a quantitative study. Nucleic Acids Res. 2015;43(11):5318–5330. doi: 10.1093/nar/gkv423. PubMed DOI PMC

Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology. 2006;43(4):817–825. doi: 10.1002/hep.21131. PubMed DOI

Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602. doi: 10.1016/s0092-8674(00)81902-9. PubMed DOI

Shang S, Hua F, Hu ZW. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8(20):33972–33989. doi: 10.18632/oncotarget.15687. PubMed DOI PMC

Shindo S, Numazawa S, Yoshida T. A physiological role of AMP-activated protein kinase in phenobarbital-mediated constitutive androstane receptor activation and CYP2B induction. Biochem J. 2007;401(3):735–741. doi: 10.1042/BJ20061238. PubMed DOI PMC

Shizu R, Yoshinari K. Nuclear receptor CAR-mediated liver cancer and its species differences. Expert Opin Drug Metab Toxicol. 2020;16(4):343–351. doi: 10.1080/17425255.2020.1746268. PubMed DOI

Shizu R, Benoki S, Numakura Y, et al. Xenobiotic-induced hepatocyte proliferation associated with constitutive active/androstane receptor (CAR) or peroxisome proliferator-activated receptor alpha (PPARalpha) is enhanced by pregnane X receptor (PXR) activation in mice. PLoS ONE. 2013;8(4):e61802. doi: 10.1371/journal.pone.0061802. PubMed DOI PMC

Strathmann J, Schwarz M, Tharappel JC, et al. PCB 153, a non-dioxin-like tumor promoter, selects for beta-catenin (Catnb)-mutated mouse liver tumors. Toxicol Sci. 2006;93(1):34–40. doi: 10.1093/toxsci/kfl041. PubMed DOI

Tamasi V, Juvan P, Beer M, Rozman D, Meyer UA. Transcriptional activation of PPARalpha by phenobarbital in the absence of CAR and PXR. Mol Pharm. 2009;6(5):1573–1581. doi: 10.1021/mp9001552. PubMed DOI

Thomas M, Bayha C, Vetter S, et al. Activating and inhibitory functions of WNT/beta-catenin in the induction of cytochromes P450 by nuclear receptors in HepaRG cells. Mol Pharmacol. 2015 doi: 10.1124/mol.114.097402. PubMed DOI

Torre C, Perret C, Colnot S. Transcription dynamics in a physiological process: beta-catenin signaling directs liver metabolic zonation. Int J Biochem Cell Biol. 2011;43(2):271–278. doi: 10.1016/j.biocel.2009.11.004. PubMed DOI

Treindl F, Zabinsky E, Kling S, Schwarz M, Braeuning A, Templin MF. Array-based Western-blotting reveals spatial differences in hepatic signaling and metabolism following CAR activation. Arch Toxicol. 2020;94(4):1265–1278. doi: 10.1007/s00204-020-02680-y. PubMed DOI

Werth M, Gebhardt R, Gaunitz F. Hepatic expression of glutamine synthetase in rats is controlled by STAT5 and TCF transcription factors. Hepatology. 2006;44(4):967–975. doi: 10.1002/hep.21322. PubMed DOI

Whysner J, Ross PM, Williams GM. Phenobarbital mechanistic data and risk assessment: enzyme induction, enhanced cell proliferation, and tumor promotion. Pharmacol Ther. 1996;71(1–2):153–191. doi: 10.1016/0163-7258(96)00067-8. PubMed DOI

Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maronpot RR. The orphan nuclear receptor constitutive active/androstane receptor is essential for liver tumor promotion by phenobarbital in mice. Cancer Res. 2004;64(20):7197–7200. doi: 10.1158/0008-5472.CAN-04-1459. PubMed DOI

Yang M, Li SN, Anjum KM, et al. A double-negative feedback loop between Wnt-beta-catenin signaling and HNF4alpha regulates epithelial-mesenchymal transition in hepatocellular carcinoma. J Cell Sci. 2013;126(Pt 24):5692–5703. doi: 10.1242/jcs.135053. PubMed DOI

Yang J, Mowry LE, Nejak-Bowen KN, et al. Beta-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology. 2014;60(3):964–976. doi: 10.1002/hep.27082. PubMed DOI PMC

Yarushkin AA, Mazin ME, Pustylnyak YA, Prokopyeva EA, Pustylnyak VO. Activation of the Akt pathway by a constitutive androstane receptor agonist results in beta-catenin activation. Eur J Pharmacol. 2020;879:173135. doi: 10.1016/j.ejphar.2020.173135. PubMed DOI

Zhao J, Yue W, Zhu MJ, Sreejayan N, Du M. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun. 2010;395(1):146–151. doi: 10.1016/j.bbrc.2010.03.161. PubMed DOI PMC

Zhao JX, Yue WF, Zhu MJ, Du M. AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem. 2011;286(18):16426–16434. doi: 10.1074/jbc.M110.199372. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...