β-catenin signaling, the constitutive androstane receptor and their mutual interactions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33097968
PubMed Central
PMC7655584
DOI
10.1007/s00204-020-02935-8
PII: 10.1007/s00204-020-02935-8
Knihovny.cz E-zdroje
- Klíčová slova
- Drug metabolism, Hepatocyte, Liver tumor promotion, Nuclear receptor, Wnt signaling,
- MeSH
- beta-katenin metabolismus MeSH
- hodnocení rizik MeSH
- játra účinky léků metabolismus patologie MeSH
- konstitutivní androstanový receptor MeSH
- lidé MeSH
- nádorová transformace buněk chemicky indukované metabolismus patologie MeSH
- nádory jater chemicky indukované metabolismus patologie MeSH
- receptory cytoplazmatické a nukleární agonisté metabolismus MeSH
- rizikové faktory MeSH
- signální dráha Wnt * MeSH
- xenobiotika toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- beta-katenin MeSH
- konstitutivní androstanový receptor MeSH
- receptory cytoplazmatické a nukleární MeSH
- xenobiotika MeSH
Aberrant signaling through β-catenin is an important determinant of tumorigenesis in rodents as well as in humans. In mice, xenobiotic activators of the constitutive androstane receptor (CAR), a chemo-sensing nuclear receptor, promote liver tumor growth by means of a non-genotoxic mechanism and, under certain conditions, select for hepatocellular tumors which contain activated β-catenin. In normal hepatocytes, interactions of β-catenin and CAR have been demonstrated with respect to the induction of proliferation and drug metabolism-related gene expression. The molecular details of these interactions are still not well understood. Recently it has been hypothesized that CAR might activate β-catenin signaling, thus providing a possible explanation for some of the observed phenomena. Nonetheless, many aspects of the molecular interplay of the two regulators have still not been elucidated. This review briefly summarizes our current knowledge about the interplay of CAR and β-catenin. By taking into account data and observations obtained with different mouse models and employing different experimental approaches, it is shown that published data also contain substantial evidence that xenobiotic activators of CAR do not activate, or do even inhibit signaling through the β-catenin pathway. The review highlights new aspects of possible ways of interaction between the two signaling cascades and will help to stimulate scientific discussion about the crosstalk of β-catenin signaling and the nuclear receptor CAR.
Zobrazit více v PubMed
Awuah PK, Rhieu BH, Singh S, Misse A, Monga SP. beta-Catenin loss in hepatocytes promotes hepatocellular cancer after diethylnitrosamine and phenobarbital administration to mice. PLoS ONE. 2012;7(6):e39771. doi: 10.1371/journal.pone.0039771. PubMed DOI PMC
Aydinlik H, Nguyen TD, Moennikes O, Buchmann A, Schwarz M. Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of beta-catenin-mutated mouse liver tumors. Oncogene. 2001;20(53):7812–7816. doi: 10.1038/sj.onc.1204982. PubMed DOI
Behrens J, Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol. 2004;48(5–6):477–487. doi: 10.1387/ijdb.041815jb. PubMed DOI
Bell AW, Michalopoulos GK. Phenobarbital regulates nuclear expression of HNF-4alpha in mouse and rat hepatocytes independent of CAR and PXR. Hepatology. 2006;44(1):186–194. doi: 10.1002/hep.21234. PubMed DOI PMC
Benhamouche S, Decaens T, Godard C, et al. Apc tumor suppressor gene is the "zonation-keeper" of mouse liver. Dev Cell. 2006;10(6):759–770. doi: 10.1016/j.devcel.2006.03.015. PubMed DOI
Berasain C, Avila MA. Deciphering liver zonation: new insights into the beta-catenin, Tcf4, and HNF4alpha triad. Hepatology. 2014;59(6):2080–2082. doi: 10.1002/hep.27000. PubMed DOI
Braeuning A, Schwarz M. beta-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver. Biol Chem. 2010;391(2–3):139–148. doi: 10.1515/BC.2010.012. PubMed DOI
Braeuning A, Ittrich C, Kohle C, et al. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006;273(22):5051–5061. doi: 10.1111/j.1742-4658.2006.05503.x. PubMed DOI
Braeuning A, Sanna R, Huelsken J, Schwarz M. Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos. 2009;37(5):1138–1145. doi: 10.1124/dmd.108.026179. PubMed DOI
Braeuning A, Singh Y, Rignall B, et al. Phenotype and growth behavior of residual beta-catenin-positive hepatocytes in livers of beta-catenin-deficient mice. Histochem Cell Biol. 2010;134(5):469–481. doi: 10.1007/s00418-010-0747-1. PubMed DOI
Braeuning A, Heubach Y, Knorpp T, et al. Gender-specific interplay of signaling through beta-catenin and CAR in the regulation of xenobiotic-induced hepatocyte proliferation. Toxicol Sci. 2011;123(1):113–122. doi: 10.1093/toxsci/kfr166. PubMed DOI
Braeuning A, Kohle C, Buchmann A, Schwarz M. Coordinate regulation of cytochrome P450 1a1 expression in mouse liver by the aryl hydrocarbon receptor and the beta-catenin pathway. Toxicol Sci. 2011;122(1):16–25. doi: 10.1093/toxsci/kfr080. PubMed DOI
Braeuning A, Gavrilov A, Geissler M, et al. Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice. Arch Toxicol. 2016 doi: 10.1007/s00204-016-1667-1. PubMed DOI
Buhler R, Lindros KO, Nordling A, Johansson I, Ingelman-Sundberg M. Zonation of cytochrome P450 isozyme expression and induction in rat liver. Eur J Biochem. 1992;204(1):407–412. doi: 10.1111/j.1432-1033.1992.tb16650.x. PubMed DOI
Burke ZD, Tosh D. The Wnt/beta-catenin pathway: master regulator of liver zonation? BioEssays. 2006;28(11):1072–1077. doi: 10.1002/bies.20485. PubMed DOI
Burke ZD, Reed KR, Phesse TJ, Sansom OJ, Clarke AR, Tosh D. Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. Gastroenterology. 2009;136(7):2316–2324. doi: 10.1053/j.gastro.2009.02.063. PubMed DOI
Colnot S, Decaens T, Niwa-Kawakita M, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA. 2004;101(49):17216–17221. doi: 10.1073/pnas.0404761101. PubMed DOI PMC
Czapinski P, Blaszczyk B, Czuczwar SJ. Mechanisms of action of antiepileptic drugs. Curr Top Med Chem. 2005;5(1):3–14. doi: 10.2174/1568026053386962. PubMed DOI
Dong B, Lee JS, Park YY, et al. Activating CAR and beta-catenin induces uncontrolled liver growth and tumorigenesis. Nat Commun. 2015;6:5944. doi: 10.1038/ncomms6944. PubMed DOI PMC
Elcombe CR, Peffer RC, Wolf DC, et al. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: a case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev Toxicol. 2014;44(1):64–82. doi: 10.3109/10408444.2013.835786. PubMed DOI PMC
Ganzenberg K, Singh Y, Braeuning A. The time point of beta-catenin knockout in hepatocytes determines their response to xenobiotic activation of the constitutive androstane receptor. Toxicology. 2013;308:113–121. doi: 10.1016/j.tox.2013.03.019. PubMed DOI
Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53(3):275–354. doi: 10.1016/0163-7258(92)90055-5. PubMed DOI
Gebhardt R, Hovhannisyan A. Organ patterning in the adult stage: the role of Wnt/beta-catenin signaling in liver zonation and beyond. Dev Dyn. 2010;239(1):45–55. doi: 10.1002/dvdy.22041. PubMed DOI
Gebhardt R, Baldysiak-Figiel A, Krugel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. Prog Histochem Cytochem. 2007;41(4):201–266. doi: 10.1016/j.proghi.2006.12.001. PubMed DOI
Giera S, Braeuning A, Kohle C, et al. Wnt/beta-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol Sci. 2010;115(1):22–33. doi: 10.1093/toxsci/kfq033. PubMed DOI
Gougelet A, Torre C, Veber P, et al. T-cell factor 4 and beta-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology. 2014;59(6):2344–2357. doi: 10.1002/hep.26924. PubMed DOI
Groll N, Petrikat T, Vetter S, et al. Coordinate regulation of Cyp2e1 by beta-catenin- and hepatocyte nuclear factor 1alpha-dependent signaling. Toxicology. 2016;350–352:40–48. doi: 10.1016/j.tox.2016.05.004. PubMed DOI
Groll N, Petrikat T, Vetter S, et al. Inhibition of beta-catenin signaling by phenobarbital in hepatoma cells in vitro. Toxicology. 2016;370:94–105. doi: 10.1016/j.tox.2016.09.018. PubMed DOI
Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M. Zonal gene expression in murine liver: lessons from tumors. Hepatology. 2006;43(3):407–414. doi: 10.1002/hep.21082. PubMed DOI
Harada N, Miyoshi H, Murai N, et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Can Res. 2002;62(7):1971–1977. PubMed
Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Can Res. 2004;64(1):48–54. doi: 10.1158/0008-5472.can-03-2123. PubMed DOI
Honkakoski P, Negishi M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J. 2000;347(Pt 2):321–337. doi: 10.1042/bj3470321. PubMed DOI PMC
Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 2017;11:622–630. doi: 10.1016/j.redox.2017.01.012. PubMed DOI PMC
Kolluri A, Ho M. The role of glypican-3 in regulating Wnt, YAP, and hedgehog in liver cancer. Front Oncol. 2019;9:708. doi: 10.3389/fonc.2019.00708. PubMed DOI PMC
Konno Y, Negishi M, Kodama S. The roles of nuclear receptors CAR and PXR in hepatic energy metabolism. Drug Metab Pharmacokinet. 2008;23(1):8–13. doi: 10.2133/dmpk.23.8. PubMed DOI
Li D, Mackowiak B, Brayman TG, et al. Genome-wide analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and CAR-knockout HepaRG cells. Biochem Pharmacol. 2015;98(1):190–202. doi: 10.1016/j.bcp.2015.08.087. PubMed DOI PMC
Lin CW, Mars WM, Paranjpe S, et al. Hepatocyte proliferation and hepatomegaly induced by phenobarbital and 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene is suppressed in hepatocyte-targeted glypican 3 transgenic mice. Hepatology. 2011;54(2):620–630. doi: 10.1002/hep.24417. PubMed DOI PMC
Loeppen S, Schneider D, Gaunitz F, et al. Overexpression of glutamine synthetase is associated with beta-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital. Can Res. 2002;62(20):5685–5688. PubMed
Luisier R, Lempiainen H, Scherbichler N, et al. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors. Toxicol Sci. 2014;139(2):501–511. doi: 10.1093/toxsci/kfu038. PubMed DOI
Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003;129(4):199–221. doi: 10.1007/s00432-003-0431-0. PubMed DOI
Mattu S, Saliba C, Sulas P, et al. High frequency of beta-catenin mutations in mouse hepatocellular carcinomas induced by a nongenotoxic constitutive androstane receptor agonist. Am J Pathol. 2018;188(11):2497–2507. doi: 10.1016/j.ajpath.2018.07.022. PubMed DOI
Molnar F, Kublbeck J, Jyrkkarinne J, Prantner V, Honkakoski P. An update on the constitutive androstane receptor (CAR) Drug Metab Drug Interact. 2013;28(2):79–93. doi: 10.1515/dmdi-2013-0009. PubMed DOI
Mutoh S, Sobhany M, Moore R, et al. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci Signal. 2013;6(274):ra31. doi: 10.1126/scisignal.2003705. PubMed DOI PMC
Oinonen T, Lindros KO. Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J. 1998;329(Pt 1):17–35. doi: 10.1042/bj3290017. PubMed DOI PMC
Park SY, Kim D, Kee SH. Metformin-activated AMPK regulates beta-catenin to reduce cell proliferation in colon carcinoma RKO cells. Oncol Lett. 2019;17(3):2695–2702. doi: 10.3892/ol.2019.9892. PubMed DOI PMC
Raskov H, Pommergaard HC, Burcharth J, Rosenberg J. Colorectal carcinogenesis–update and perspectives. World J Gastroenterol. 2014;20(48):18151–18164. doi: 10.3748/wjg.v20.i48.18151. PubMed DOI PMC
Rignall B, Braeuning A, Buchmann A, Schwarz M. Tumor formation in liver of conditional beta-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen. Carcinogenesis. 2011;32(1):52–57. doi: 10.1093/carcin/bgq226. PubMed DOI
Schreiber S, Rignall B, Braeuning A, et al. Phenotype of single hepatocytes expressing an activated version of beta-catenin in liver of transgenic mice. J Mol Histol. 2011;42(5):393–400. doi: 10.1007/s10735-011-9342-6. PubMed DOI
Schulthess P, Loffler A, Vetter S, et al. Signal integration by the CYP1A1 promoter–a quantitative study. Nucleic Acids Res. 2015;43(11):5318–5330. doi: 10.1093/nar/gkv423. PubMed DOI PMC
Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology. 2006;43(4):817–825. doi: 10.1002/hep.21131. PubMed DOI
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602. doi: 10.1016/s0092-8674(00)81902-9. PubMed DOI
Shang S, Hua F, Hu ZW. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8(20):33972–33989. doi: 10.18632/oncotarget.15687. PubMed DOI PMC
Shindo S, Numazawa S, Yoshida T. A physiological role of AMP-activated protein kinase in phenobarbital-mediated constitutive androstane receptor activation and CYP2B induction. Biochem J. 2007;401(3):735–741. doi: 10.1042/BJ20061238. PubMed DOI PMC
Shizu R, Yoshinari K. Nuclear receptor CAR-mediated liver cancer and its species differences. Expert Opin Drug Metab Toxicol. 2020;16(4):343–351. doi: 10.1080/17425255.2020.1746268. PubMed DOI
Shizu R, Benoki S, Numakura Y, et al. Xenobiotic-induced hepatocyte proliferation associated with constitutive active/androstane receptor (CAR) or peroxisome proliferator-activated receptor alpha (PPARalpha) is enhanced by pregnane X receptor (PXR) activation in mice. PLoS ONE. 2013;8(4):e61802. doi: 10.1371/journal.pone.0061802. PubMed DOI PMC
Strathmann J, Schwarz M, Tharappel JC, et al. PCB 153, a non-dioxin-like tumor promoter, selects for beta-catenin (Catnb)-mutated mouse liver tumors. Toxicol Sci. 2006;93(1):34–40. doi: 10.1093/toxsci/kfl041. PubMed DOI
Tamasi V, Juvan P, Beer M, Rozman D, Meyer UA. Transcriptional activation of PPARalpha by phenobarbital in the absence of CAR and PXR. Mol Pharm. 2009;6(5):1573–1581. doi: 10.1021/mp9001552. PubMed DOI
Thomas M, Bayha C, Vetter S, et al. Activating and inhibitory functions of WNT/beta-catenin in the induction of cytochromes P450 by nuclear receptors in HepaRG cells. Mol Pharmacol. 2015 doi: 10.1124/mol.114.097402. PubMed DOI
Torre C, Perret C, Colnot S. Transcription dynamics in a physiological process: beta-catenin signaling directs liver metabolic zonation. Int J Biochem Cell Biol. 2011;43(2):271–278. doi: 10.1016/j.biocel.2009.11.004. PubMed DOI
Treindl F, Zabinsky E, Kling S, Schwarz M, Braeuning A, Templin MF. Array-based Western-blotting reveals spatial differences in hepatic signaling and metabolism following CAR activation. Arch Toxicol. 2020;94(4):1265–1278. doi: 10.1007/s00204-020-02680-y. PubMed DOI
Werth M, Gebhardt R, Gaunitz F. Hepatic expression of glutamine synthetase in rats is controlled by STAT5 and TCF transcription factors. Hepatology. 2006;44(4):967–975. doi: 10.1002/hep.21322. PubMed DOI
Whysner J, Ross PM, Williams GM. Phenobarbital mechanistic data and risk assessment: enzyme induction, enhanced cell proliferation, and tumor promotion. Pharmacol Ther. 1996;71(1–2):153–191. doi: 10.1016/0163-7258(96)00067-8. PubMed DOI
Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maronpot RR. The orphan nuclear receptor constitutive active/androstane receptor is essential for liver tumor promotion by phenobarbital in mice. Cancer Res. 2004;64(20):7197–7200. doi: 10.1158/0008-5472.CAN-04-1459. PubMed DOI
Yang M, Li SN, Anjum KM, et al. A double-negative feedback loop between Wnt-beta-catenin signaling and HNF4alpha regulates epithelial-mesenchymal transition in hepatocellular carcinoma. J Cell Sci. 2013;126(Pt 24):5692–5703. doi: 10.1242/jcs.135053. PubMed DOI
Yang J, Mowry LE, Nejak-Bowen KN, et al. Beta-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology. 2014;60(3):964–976. doi: 10.1002/hep.27082. PubMed DOI PMC
Yarushkin AA, Mazin ME, Pustylnyak YA, Prokopyeva EA, Pustylnyak VO. Activation of the Akt pathway by a constitutive androstane receptor agonist results in beta-catenin activation. Eur J Pharmacol. 2020;879:173135. doi: 10.1016/j.ejphar.2020.173135. PubMed DOI
Zhao J, Yue W, Zhu MJ, Sreejayan N, Du M. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun. 2010;395(1):146–151. doi: 10.1016/j.bbrc.2010.03.161. PubMed DOI PMC
Zhao JX, Yue WF, Zhu MJ, Du M. AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem. 2011;286(18):16426–16434. doi: 10.1074/jbc.M110.199372. PubMed DOI PMC