Satellite DNAs (satDNA) are tandemly arrayed repeated sequences largely present in eukaryotic genomes, which play important roles in genome evolution and function, and therefore, their analysis is vital. Here, we describe the isolation of a novel satellite DNA family (PMSat) from the rodent Peromyscus eremicus (Cricetidae, Rodentia), which is located in pericentromeric regions and exhibits a typical satellite DNA genome organization. Orthologous PMSat sequences were isolated and characterized from three species belonging to Cricetidae: Cricetus cricetus, Phodopus sungorus and Microtus arvalis. In these species, PMSat is highly conserved, with the absence of fixed species-specific mutations. Strikingly, different numbers of copies of this sequence were found among the species, suggesting evolution by copy number fluctuation. Repeat units of PMSat were also found in the Peromyscus maniculatus bairdii BioProject, but our results suggest that these repeat units are from genome regions outside the pericentromere. The remarkably high evolutionary sequence conservation along with the preservation of a few numbers of copies of this sequence in the analyzed genomes may suggest functional significance but a different sequence nature/organization. Our data highlight that repeats are difficult to analyze due to the limited tools available to dissect genomes and the fact that assemblies do not cover regions of constitutive heterochromatin.
- MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Physical Chromosome Mapping MeSH
- Genome * MeSH
- Gene Dosage * MeSH
- Peromyscus genetics MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Computer Simulation MeSH
- Restriction Mapping MeSH
- DNA, Satellite genetics isolation & purification MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Alignment MeSH
- Blotting, Southern MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
elektronický časopis
- MeSH
- Biological Evolution MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Genetic Code MeSH
- Base Sequence MeSH
- Conspectus
- Obecná genetika. Obecná cytogenetika. Evoluce
- NML Fields
- biologie
- genetika, lékařská genetika
- biologie
- NML Publication type
- elektronické časopisy
1st ed. ix, 309 s.
Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.
- MeSH
- Biological Evolution * MeSH
- Time Factors MeSH
- Centromere genetics MeSH
- Chromosomes, Plant genetics MeSH
- Species Specificity MeSH
- Genetic Variation MeSH
- Genome, Plant genetics physiology MeSH
- Magnoliopsida genetics physiology MeSH
- Molecular Sequence Data MeSH
- Base Sequence MeSH
- Telomere genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes. RESULTS: The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained. CONCLUSIONS: The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.
Duckweeds are aquatic monocotyledonous plants of potential economic interest with fast vegetative propagation, comprising 37 species with variable genome sizes (0.158-1.88 Gbp). The genomic sequence of Spirodela polyrhiza, the smallest and the most ancient duckweed genome, needs to be aligned to its chromosomes as a reference and prerequisite to study the genome and karyotype evolution of other duckweed species. We selected physically mapped bacterial artificial chromosomes (BACs) containing Spirodela DNA inserts with little or no repetitive elements as probes for multicolor fluorescence in situ hybridization (mcFISH), using an optimized BAC pooling strategy, to validate its physical map and correlate it with its chromosome complement. By consecutive mcFISH analyses, we assigned the originally assembled 32 pseudomolecules (supercontigs) of the genomic sequences to the 20 chromosomes of S. polyrhiza. A Spirodela cytogenetic map containing 96 BAC markers with an average distance of 0.89 Mbp was constructed. Using a cocktail of 41 BACs in three colors, all chromosome pairs could be individualized simultaneously. Seven ancestral blocks emerged from duplicated chromosome segments of 19 Spirodela chromosomes. The chromosomally integrated genome of S. polyrhiza and the established prerequisites for comparative chromosome painting enable future studies on the chromosome homoeology and karyotype evolution of duckweed species.
- MeSH
- Araceae genetics MeSH
- Chromosomes, Plant genetics MeSH
- Physical Chromosome Mapping MeSH
- Genome, Plant genetics MeSH
- Genomics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype MeSH
- Karyotyping MeSH
- Evolution, Molecular MeSH
- Chromosomes, Artificial, Bacterial MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The eukaryotic endomembrane system (ES) is served by hundreds of dedicated proteins. Experimental characterization of the ES-associated molecular machinery in several model eukaryotes complemented by a recent progress in phylogenomics and comparative genomics have revealed a conserved complex core of the machinery that appears to have been established before the last eukaryotic common ancestor (LECA). At the same time, modern eukaryotes exhibit a huge variation in the ES resulting from a multitude of evolutionary processes operating along the ever-branching paths from the LECA to its descendants. The most important source of evolutionary novelty in the ES functioning has undoubtedly been gene duplication followed by divergence of the gene copies, responsible not only for the pre-LECA establishment of many multi-paralog families of proteins in the very core of the ES-associated machinery, but also for post-LECA lineage-specific elaborations via family expansions and the origin of novel components. Extreme sequence divergence has obscured actual homologous relationships between potentially many components of the machinery, even between orthologous proteins, as illustrated by the yeast Vps51 subunit of the vesicle tethering complex GARP hypothesized here to be a highly modified ortholog of a conserved eukaryotic family typified by the zebrafish Fat-free (Ffr) protein. A dynamic evolution of many ES-associated proteins, especially those centred around RAB and ARF GTPases, seems to take place at the level of their domain architectures. Finally, reductive evolution and recurrent gene loss are emerging as pervasive factors shaping the ES in all phylogenetic lineages.
- MeSH
- Gene Duplication MeSH
- Eukaryotic Cells metabolism physiology MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- Evolution, Molecular MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Telomeres, which form the protective ends of eukaryotic chromosomes, are a ubiquitous and conserved structure of eukaryotic genomes but the basic structural unit of most telomeres, a repeated minisatellite motif with the general consensus sequence T(n)A(m)G(o), may vary between eukaryotic groups. Previous studies on several species of green algae revealed that this group exhibits at least two types of telomeric sequences, a presumably ancestral type shared with land plants (Arabidopsis type, TTTAGGG) and conserved in, for example, Ostreococcus and Chlorella species, and a novel type (Chlamydomonas type, TTTTAGGG) identified in Chlamydomonas reinhardtii. We have employed several methodical approaches to survey the diversity of telomeric sequences in a phylogenetically wide array of green algal species, focusing on the order Chlamydomonadales. Our results support the view that the Arabidopsis-type telomeric sequence is ancestral for green algae and has been conserved in most lineages, including Mamiellophyceae, Chlorodendrophyceae, Trebouxiophyceae, Sphaeropleales, and most Chlamydomonadales. However, within the Chlamydomonadales, at least two independent evolutionary changes to the Chlamydomonas type occurred, specifically in a subgroup of the Reinhardtinia clade (including C. reinhardtii and Volvox carteri) and in the Chloromonadinia clade. Furthermore, a complex structure of telomeric repeats, including a mix of the ancestral Arabidopsis-type motifs and derived motifs identical to the human-type telomeric repeats (TTAGGG), was found in the chlamydomonadalean clades Dunaliellinia and Stephanosphaeria. Our results indicate that telomere evolution in green algae, particularly in the order Chlamydomonadales, is far more dynamic and complex than thought before. General implications of our findings for the mode of telomere evolution are discussed.
- MeSH
- Chlorophyta genetics MeSH
- Evolution, Molecular MeSH
- Telomere genetics MeSH
- Volvocida genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH