Factors determining chromosomal localization of transposable elements in plants
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Review
Grant support
21-00580S
Grantová Agentura České Republiky
22-00364S
Grantová Agentura České Republiky
24-11400S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004581
Ministerstvo Školství České Republiky
PubMed
40443126
PubMed Central
PMC12477314
DOI
10.1111/plb.70057
Knihovny.cz E-resources
- Keywords
- Centromere, chromosomes, plant genome, recombination, transcription factor, transposable elements,
- MeSH
- Centromere genetics MeSH
- Chromosomes, Plant * genetics MeSH
- Genome, Plant genetics MeSH
- Evolution, Molecular MeSH
- Plants * genetics MeSH
- DNA Transposable Elements * genetics MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- DNA Transposable Elements * MeSH
Transposable elements (TEs) constitute a significant part of plant genomes and shape their genomic landscape. While some TEs are ubiquitously dispersed, other elements specifically occupy discrete genomic loci. The evolutionary forces behind the chromosomal localization of TEs are poorly understood. Therefore, we first review specific chromosomal niches where TEs are often localized including (i) centromeres, (ii) (sub)telomeres, (iii) genes, and (iv) sex chromosomes. In the second part of this review, we focus on the processes standing behind non-equal distribution of various TEs in genomes including (i) purifying selection, (ii) insertion site preference or targeting of TEs, (iii) post-insertion ectopic recombination between TEs, and (iv) spatiotemporal regulation of TE jumping. Using the combination of the above processes, we explain the distribution of TEs on sex chromosomes. We also describe the phenomena of mutual nesting of TEs, epigenetic mark silencing in TEs, and TE interactions in the 3D interphase nucleus concerning TE localization. We summarize the functional consequences of TE distribution and relate them to cell functioning and genome evolution.
See more in PubMed
Aguilar M., Prieto P. (2020) Sequence analysis of wheat subtelomeres reveals a high polymorphism among homoeologous chromosomes. Plant Genome, 13, e20065. 10.1002/tpg2.20065 PubMed DOI
Ahmed H.I., Heuberger M., Schoen A., Koo D.H., Quiroz‐Chavez J., Adhikari L., Raupp J., Cauet S., Rodde N., Cravero C., Callot C., Lazo G.R., Kathiresan N., Sharma P.K., Moot I., Yadav I.S., Singh L., Saripalli G., Rawat N., Datla R., Athiyannan N., Ramirez‐Gonzalez R.H., Uauy C., Wicker T., Tiwari V.K., Abrouk M., Poland J., Krattinger S.G. (2023) Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature, 620, 830–838. 10.1038/s41586-023-06389-7 PubMed DOI PMC
Aiewsakun P., Katzourakis A. (2017) Marine origin of retroviruses in the early Palaeozoic era. Nature Communications, 8, 13954. 10.1038/ncomms13954 PubMed DOI PMC
Almeida M.V., Vernaz G., Putman A.L.K., Miska E.A. (2022) Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends in Genetics, 38, 529–553. 10.1016/j.tig.2022.02.009 PubMed DOI
Arkhipova I.R. (2006) Distribution and phylogeny of penelope‐like elements in eukaryotes. Systematic Biology, 55, 875–885. 10.1080/10635150601077683 PubMed DOI
Arkhipova I.R., Yushenova I.A., Rodriguez F. (2017) Giant reverse transcriptase‐encoding transposable elements at telomeres. Molecular Biology and Evolution, 34, 2245–2257. 10.1093/molbev/msx159 PubMed DOI PMC
Bancroft I., Dean C. (1993) Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics, 134, 1221–1229. 10.1093/genetics/134.4.1221 PubMed DOI PMC
Barro‐Trastoy D., Köhler C. (2024) Helitrons: genomic parasites that generate developmental novelties. Trends in Genetics, 40, 437–448. 10.1016/j.tig.2024.02.002 PubMed DOI
Baud A., Wan M., Nouaud D., Francillonne N., Anxolabéhère D., Quesneville H. (2022) Traces of transposable elements in genome dark matter co‐opted by flowering gene regulation networks. PeerJ, 2, e14. 10.24072/pcjournal.68 DOI
Birchler J.A., Presting G.G. (2012) Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes & Development, 26, 638–640. 10.1101/gad.191049.112 PubMed DOI PMC
Borg M., Jacob Y., Susaki D., LeBlanc C., Buendía D., Axelsson E., Kawashima T., Voigt P., Boavida L., Becker J., Higashiyama T., Martienssen R., Berger F. (2020) Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nature Cell Biology, 22, 621–629. 10.1038/s41556-020-0515-y PubMed DOI PMC
Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. (2018) Ten things you should know about transposable elements. Genome Biology, 19, 199. 10.1186/s13059-018-1577-z PubMed DOI PMC
Bousios A., Nutzmann H.‐W., Buck D., Michieletto D. (2020) Integrating transposable elements in the 3D genome. Mobile DNA, 11, 8. 10.1186/s13100-020-0202-3 PubMed DOI PMC
Bucher E., Reinders J., Mirouze M. (2012) Epigenetic control of transposon transcription and mobility in Arabidopsis. Current Opinion in Plant Biology, 15, 503–510. 10.1016/j.pbi.2012.08.006 PubMed DOI
Bureau T.E., Wessler S.R. (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell, 4, 1283–1294. 10.2307/3869414 PubMed DOI PMC
Bureau T.E., Wessler S.R. (1994) Mobile inverted‐repeat elements of the tourist family are associated with the genes of many cereal grasses. Proceedings of the National Academy of Sciences of the United States of America, 91, 1411–1415. 10.1073/pnas.91.4.1411 PubMed DOI PMC
Cai X., Lin R., Liang J., King G.J., Wu J., Wang X. (2022) Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa. Plant Biotechnology Journal, 20, 1298–1310. 10.1111/pbi.13807 PubMed DOI PMC
Calarco J.P., Borges F., Donoghue M.T.A., Van Ex F., Jullien P.E., Lopes T., Gardner R., Berger F., Feijó J.A., Becker J.D., Martienssen R.A. (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell, 151, 194–205. 10.1016/j.cell.2012.09.001 PubMed DOI PMC
Calarco J.P., Martienssen R. (2012) Imprinting: DNA methyltransferases illuminate reprogramming. Current Biology, 22, R929–R931. 10.1016/j.cub.2012.09.030 PubMed DOI PMC
Canapa A., Barucca M., Biscotti M.A., Forconi M., Olmo E. (2015) Transposons, genome size, and evolutionary insights in animals. Cytogenetic and Genome Research, 147, 217–239. 10.1159/000444429 PubMed DOI
Capy P. (2021) Taming, domestication and exaptation: trajectories of transposable elements in genomes. Cells, 10, 3590. 10.3390/cells10123590 PubMed DOI PMC
Capy P., Vitalis R., Langin T., Higuet D., Bazin C. (1996) Relationships between transposable elements based upon the integrase‐transposase domains: is there a common ancestor? Journal of Molecular Evolution, 42, 359–368. 10.1007/bf02337546 PubMed DOI
Casacuberta E., Casacuberta J.M., Puigdomènech P., Monfort A. (1998) Presence of miniature inverted‐repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the emigrant family of elements. Plant Journal, 16, 79–85. 10.1046/j.1365-313x.1998.00267.x PubMed DOI
Casacuberta J.M., Santiago N. (2003) Plant LTR‐retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene, 311, 1–11. 10.1016/S0378-1119(03)00557-2 PubMed DOI
Cavrak V.V., Lettner N., Jamge S., Kosarewicz A., Bayer L.M., Mittelsten Scheid O. (2014) How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genetics, 10, e1004115. 10.1371/journal.pgen.1004115 PubMed DOI PMC
Cegan R., Vyskot B., Kejnovsky E., Kubat Z., Blavet H., Šafář J., Doležel J., Blavet N., Hobza R. (2012) Genomic diversity in two related plant species with and without sex chromosomes—silene latifolia and PubMed DOI PMC
Cermak T., Kubat Z., Hobza R., Koblizkova A., Widmer A., Macas J., Vyskot B., Kejnovsky E. (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Research, 16, 961–976. 10.1007/s10577-008-1254-2 PubMed DOI
Charles M., Belcram H., Just J., Huneau C., Viollet A., Couloux A., Segurens B., Carter M., Huteau V., Coriton O., Appels R., Samain S., Chalhoub B. (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics, 180, 1071–1086. 10.1534/genetics.108.092304 PubMed DOI PMC
Charlesworth B. (1991) The evolution of sex chromosomes. Science, 251, 1030–1033. 10.1126/science.1998119 PubMed DOI
Charrier B. (1999) Bigfoot: a new family of MITE elements characterized from the Medicago genus. The Plant Journal, 18, 431–441. 10.1111/j.1365-313x.1999.00469.x PubMed DOI
Choi J.Y., Lee Y.C.G. (2020) Double‐edged sword: the evolutionary consequences of the epigenetic silencing of transposable elements. PLoS Genetics, 16, e1008872. 10.1371/journal.pgen.1008872 PubMed DOI PMC
Cost G.J., Feng Q., Jacquier A., Boeke J.D. (2002) Human L1 element target‐primed reverse transcription in vitro. EMBO Journal, 21, 5899–5910. 10.1093/emboj/cdf592 PubMed DOI PMC
Craigie R. (1992) Hotspots and warm spots: Integration specificity of retroelements. Trends in Genetics, 8, 187–190. 10.1016/0168-9525(92)90223-q PubMed DOI
Creasey K.M., Zhai J., Borges F., Van Ex F., Regulski M., Mayers B.C., Martienssen R.A. (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature, 508, 411–415. 10.1038/nature13069 PubMed DOI PMC
Dai S., Hou J., Long Y., Wang J., Li C., Xiao Q., Jiang X., Zou X., Zou J., Meng J. (2015) Widespread and evolutionary analysis of a MITE family monkey King in Brassicaceae. BMC Plant Biology, 15, 149. 10.1186/s12870-015-0490-9 PubMed DOI PMC
Deneweth J., Van De Peer Y., Vermeirssen V. (2022) Nearby transposable elements impact plant stress gene regulatory networks: a meta‐analysis in A. thaliana and S. lycopersicum. BMC Genomics, 23, 18. 10.1186/s12864-021-08215-8 PubMed DOI PMC
D'Hont A., Denoeud F., Aury J.M., Baurens F.C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M., Da Silva C., Jabbari K., Cardi C., Poulain J., Souquet M., Labadie K., Jourda C., Lengellé J., Rodier‐Goud M., Alberti A., Bernard M., Correa M., Ayyampalayam S., Mckain M.R., Leebens‐Mack J., Burgess D., Freeling M., Mbéguié‐A‐Mbéguié D., Chabannes M., Wicker T., Panaud O., Barbosa J., Hribova E., Heslop‐Harrison P., Habas R., Rivallan R., Francois P., Poiron C., Kilian A., Burthia D., Jenny C., Bakry F., Brown S., Guignon V., Kema G., Dita M., Waalwijk C., Joseph S., Dievart A., Jaillon O., Leclercq J., Argout X., Lyons E., Almeida A., Jeridi M., Dolezel J., Roux N., Risterucci A.M., Weissenbach J., Ruiz M., Glaszmann J.C., Quétier F., Yahiaoui N., Wincker P. (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488, 213–217. 10.1038/nature11241 PubMed DOI
Dohm J.C., Minoche A.E., Holtgrawe D., Capella‐Gutierrez S., Zakrzewski F., Tafer H., Rupp O., Sörensen T.R., Stracke R., Reinhardt R., Goesmann A., Kraft T., Schulz B., Stadler P.F., Schmidt T., Gabaldón T., Lehrach H., Weisshaar B., Himmelbauer H. (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505, 546–549. 10.1038/nature12817 PubMed DOI
Dooner H.K., Keller J., Harper E., Ralston E. (1991) Variable patterns of transposition of the maize element activator in tobacco. The Plant Cell, 3, 473–482. 10.1105/tpc.3.5.473 PubMed DOI PMC
Drost H.G., Sanchez D.H. (2019) Becoming a selfish clan: recombination associated to reverse‐transcription in LTR retrotransposons. Genome Biology and Evolution, 11, 3382–3392. 10.1093/gbe/evz255 PubMed DOI PMC
Dukić M., Bomblies K. (2022) Male and female recombination landscapes of diploid Arabidopsis arenosa. Genetics, 220, iyab236. 10.1093/genetics/iyab236 PubMed DOI PMC
Elliott T.A., Gregory T.R. (2015) What's in a genome? The C‐value enigma and the evolution of eukaryotic genome content. Philosophical Transactions of the Royal Society B, 370, 20140331. 10.1098/rstb.2014.0331 PubMed DOI PMC
Evgen'ev M.B., Arkhipova I.R. (2005) Penelope‐like elements–a new class of retroelements: Distribution, function and possible evolutionary significance. Cytogenetic and Genome Research, 110, 510–521. 10.1159/000084984 PubMed DOI
Fernandes J.B., Naish M., Lian Q., Burns R., Tock A.J., Rabanal F.A., Wlodzimierz P., Habring A., Nicholas R.E., Weigel D., Mercier R., Henderson I.R. (2024) Structural variation and DNA methylation shape the centromere‐proximal meiotic crossover landscape in Arabidopsis. Genome Biology, 25, 30. 10.1186/s13059-024-03163-4 PubMed DOI PMC
Feschotte C. (2008) The contribution of transposable elements to the evolution of regulatory networks. Nature Reviews Genetics, 9, 397–405. 10.1038/nrg2337 PubMed DOI PMC
Feschotte C., Zhang X., Wessler S.R. (2007) Miniature inverted‐repeat transposable elements and their relationship to established DNA transposons. In: Craig N.L., Craigie R., Gellert M., Lambowitz A.M. (Eds), Mobile DNA II. ASM Press: Washington, D.C. (USA) 10.1128/9781555817954.ch50 DOI
Filatov D.A., Howell E.C., Groutides C., Armstrong S.J. (2009) Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics, 181, 811–817. 10.1534/genetics.108.099267 PubMed DOI PMC
Finnegan D. (2012) Retrotransposons. Current Biology, 22, R432–R437. 10.1016/j.cub.2012.04.025 PubMed DOI
Fu H., Park W., Yan X., Zheng Z., Shen B., Dooner H.K. (2001) The highly recombinogenic bz locus lies in an unusually gene‐rich region of the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 98, 8903–8908. 10.1073/pnas.141221898 PubMed DOI PMC
Fuentes R.R., De Ridder D., Van Dijk A.D.J., Peters S.A. (2022) Domestication shapes recombination patterns in tomato. Molecular Biology and Evolution, 39, msab287. 10.1093/molbev/msab287 PubMed DOI PMC
Gangadharan S., Mularoni L., Fain‐Thornton J., Wheelan S.J., Craig N.L. (2010) DNA transposon Hermes inserts into DNA in nucleosome‐free regions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 107, 21966–21972. 10.1073/pnas.1016382107 PubMed DOI PMC
Gao X., Hou Y., Ebina H., Levin H.L., Voytas D.F. (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Research, 18, 359–369. 10.1101/gr.7146408 PubMed DOI PMC
Gehring M. (2013) Genomic imprinting: Insights from plants. Annual Review of Genetics, 47, 187–208. 10.1146/annurev-genet-110711-155527 PubMed DOI
Gehring M., Bubb K.L., Henikoff S. (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science, 324, 1447–1451. 10.1126/science.1171609 PubMed DOI PMC
Gent J.I., Ellis N.A., Guo L., Harkess A.E., Yao Y., Zhang X., Dawe R.K. (2013) CHH islands: De novo DNA methylation in near‐gene chromatin regulation in maize. Genome Research, 23, 628–637. 10.1101/gr.146985.112 PubMed DOI PMC
Gent J.I., Madzima T.F., Bader R., Kent M.R., Zhang X., Stam M., McGinnis K.M., Dawe R.K. (2014) Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA‐directed DNA methylation. The Plant Cell, 26, 4903–4917. 10.1105/tpc.114.130427 PubMed DOI PMC
Gent J.I., Wang N., Dawe R.K. (2017) Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives. Genome Biology, 18, 121. 10.1186/s13059-017-1249-4 PubMed DOI PMC
Gladyshev E.A., Arkhipova I.R. (2007) Telomere‐associated endonuclease‐deficient Penelope‐like retroelements in diverse eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 104, 9352–9357. 10.1073/pnas.0702741104 PubMed DOI PMC
Goettel W., Zhang H., Li Y., Qiao Z., Jiang H., Hou D., Song Q., et al. (2022) POWR1 Is a Domestication Gene Pleiotropically Regulating Seed Quality and Yield in Soybean. Nature Communications, 13, 3051. 10.1038/s41467-022-30314-7 PubMed DOI PMC
Haenel Q., Laurentino T.G., Roesti M., Berner D. (2018) Meta‐analysis of chromosome‐scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Molecular Ecology, 27, 2477–2497. 10.1111/mec.14699 PubMed DOI
Hayward A. (2017) Origin of the retroviruses: When, where, and how? Current Opinion in Virology, 25, 23–27. 10.1016/j.coviro.2017.06.006 PubMed DOI PMC
Hénaff E., Vives C., Desvoyes B., Chaurasia A., Payet J., Gutierrez C., Casacuberta J.M. (2014) Extensive amplification of the E2F transcription factor binding sites by transposons during evolution of brassica species. The Plant Journal, 77, 852–862. 10.1111/tpj.12434 PubMed DOI
Heng H.H.Q. (2009) The genome‐centric concept: Resynthesis of evolutionary theory. BioEssays, 31, 512–525. 10.1002/bies.200800182 PubMed DOI
Heuberger M., Koo D.H., Ahmed H.I., Tiwari V.K., Abrouk M., Poland J., Krattinger S.G., Wicker T. (2024) Evolution of einkorn wheat centromeres is driven by the mutualistic interplay of two LTR retrotransposons. Mobile DNA, 15, 16. 10.1186/s13100-024-00326-9 PubMed DOI PMC
Hobza R., Cegan R., Jesionek W., Kejnovsky E., Vyskot B., Kubat Z. (2017) Impact of repetitive elements on the Y chromosome formation in plants. Genes, 8, 302. 10.3390/genes8110302 PubMed DOI PMC
Hofstatter P.G., Thangavel G., Lux T., Neumann P., Vondrak T., Novak P., Zhang M., Costa L., Castellani M., Scott A., Toegelová H., Fuchs J., Mata‐Sucre Y., Dias Y., Vanzela A.L.L., Huettel B., Almeida C.C.S., Šimková H., Souza G., Pedrosa‐Harand A., Macas J., Mayer K.F.X., Houben A., Marques A. (2022) Repeat‐based holocentromeres influence genome architecture and karyotype evolution. Cell, 185, 3153–3168.e18. 10.1016/j.cell.2022.06.045 PubMed DOI
Horvath J., Jedlicka P., Kratka M., Kubat Z., Kejnovsky E., Lexa M. (2024) Detection and classification of long terminal repeat sequences in plant LTR‐retrotransposons and their analysis using explainable machine learning. bioRxiv, 2024.06.11.598549. 10.1101/2024.06.11.598549 PubMed DOI PMC
Hsieh T.‐F., Ibarra C., Silva P., Zemach A., Eshed‐Williams L., Fischer R.L., Zilberman D. (2009) Genome‐wide demethylation of Arabidopsis endosperm. Science, 324, 1451–1454. 10.1126/science.1172417 PubMed DOI PMC
Huang Y., Gao Y., Ly K., Lin L., Lambooij J.P., King E.G., Janssen A., Wei K.H.‐C., Lee Y.C.G. (2024) Varying recombination landscapes between individuals are driven by polymorphic transposable elements. 10.1101/2024.09.17.613564 PubMed DOI PMC
Ito H., Gaubert H., Bucher E., Mirouze M., Vaillant I., Paszkowski J. (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472, 115–119. 10.1038/nature09861 PubMed DOI
Jedlicka P., Lexa M., Vanat I., Hobza R., Kejnovsky E. (2019) Nested plant LTR retrotransposons target specific regions of other elements, while all LTR retrotransposons often target palindromes and nucleosome‐occupied regions: In silico study. Mobile DNA, 10, 50. 10.1186/s13100-019-0186-z PubMed DOI PMC
Jedlička P., Tokan V., Kejnovská I., Hobza R., Kejnovský E. (2023) Telomeric retrotransposons show propensity to form G‐quadruplexes in various eukaryotic species. Mobile DNA, 14, 3. 10.1186/s13100-023-00291-9 PubMed DOI PMC
Jesionek W., Bodláková M., Kubát Z., Čegan R., Vyskot B., Vrána J., Šafář J., Puterova J., Hobza R. (2021) Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa. Annals of Botany, 127, 33–47. 10.1093/aob/mcaa160 PubMed DOI PMC
Joly‐Lopez Z., Bureau T.E. (2018) Exaptation of transposable element coding sequences. Current Opinion in Genetics and Development, 49, 34–42. 10.1016/j.gde.2018.02.011 PubMed DOI
Jung S., Venkatesh J., Kang M.Y., Kwon J.‐K., Kang B.‐C. (2019) A non‐LTR retrotransposon activates anthocyanin biosynthesis by regulating a myb transcription factor in capsicum annuum. Plant Science, 287, 110181. 10.1016/j.plantsci.2019.110181 PubMed DOI
Kapitonov V.V., Jurka J. (2001) Rolling‐circle transposons in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 98, 8714–8719. 10.1073/pnas.151269298 PubMed DOI PMC
Kawashima T., Berger F. (2014) Epigenetic reprogramming in plant sexual reproduction. Nature Reviews Genetics, 15, 613–624. 10.1038/nrg3685 PubMed DOI
Kejnovsky E., Hawkins J.S., Feschotte C. (2012) Plant transposable elements: Biology and evolution. In: Wendel J.F., Leitch I., Dolezel J. (Eds), Diversity of genomes in plants. Springer: Vienna (Austria), pp 17–34. 10.1007/978-3-7091-1130_2 DOI
Kejnovsky E., Jedlicka P. (2022) Nucleic acids movement and its relation to genome dynamics of repetitive DNA: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components?: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components? BioEssays, 44, e2100242. 10.1002/bies.202100242 PubMed DOI
Kejnovsky E., Kubat Z., Macas J., Hobza R., Mracek J., Vyskot B. (2006) Retand: A novel family of gypsy‐like retrotransposon harboring an amplified tandem repeat. Molecular Genetics and Genomics, 276, 254–263. 10.1007/s00438-006-0140-x PubMed DOI
Kejnovsky E., Lexa M. (2014) Quadruplex‐forming DNA sequences spread by retrotransposons may serve as genome regulators. Mobile Genetic Elements, 4, e28084. 10.4161/mge.28084 PubMed DOI PMC
Kejnovsky E., Michalovova M., Steflova P., Kejnovska I., Manzano S., Hobza R., Kubat Z., Kovarik J., Jamilena M., Vyskot B. (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS One, 8, e45519. 10.1371/journal.pone.0045519 PubMed DOI PMC
Kejnovsky E., Jedlicka P., Lexa M., Kubat Z. (2025) Factors determining chromosomal localization of transposable elements in plants. https://doi.org/10.5281/zenodo.15480284 PubMed PMC
Kent T.V., Uzunović J., Wright S.I. (2017) Coevolution between transposable elements and recombination. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372, 20160458. 10.1098/rstb.2016.0458 PubMed DOI PMC
Kordis D. (2005) A genomic perspective on the chromodomain‐containing retrotransposons: Chromoviruses. Gene, 347, 161–173. 10.1016/j.gene.2004.12.017 PubMed DOI
Kralova T., Cegan R., Kubat Z., Vrana J., Vyskot B., Vogel I., Kejnovsky E., Hobza R. (2014) Identification of a novel retrotransposon with sex chromosome‐specific distribution in Silene latifolia. Cytogenetic and Genome Research, 143, 87–95. 10.1159/000362142 PubMed DOI
Kubat Z., Zluvova J., Vogel I., Kovacova V., Cermak T., Cegan R., Hobza R., Vyskot B., Kejnovsky E. (2014) Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. The New Phytologist, 202, 662–678. 10.1111/nph.12669 PubMed DOI
Law J., Jacobsen S.E. (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11, 204–220. 10.1038/nrg2719 PubMed DOI PMC
Lexa M., Cechova M., Nguyen S.H., Jedlicka P., Tokan V., Kubat Z., Hobza R., Kejnovsky E. (2022) HiC‐TE: A computational pipeline for hi‐C data analysis to study the role of repeat family interactions in the genome 3D organization. Bioinformatics, 38, 4030–4032. 10.1093/bioinformatics/btac442 PubMed DOI
Li S., Vandivier L.E., Tu B., Gao L., Won S.Y., Li S., Zheng B., Gregory B.D., Chen X. (2015) Detection of pol IV / RDR2‐dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis. Genome Research, 25, 235–245. 10.1101/gr.182238.114 PubMed DOI PMC
Li S.F., Guo Y.J., Li J.R., Zhang D.X., Wang B.X., Li N., Deng C.L., Gao W.J. (2019) The landscape of transposable elements and satellite DNAs in the genome of a dioecious plant spinach (Spinacia oleracea L.). Mobile DNA, 10, 3. 10.1186/s13100-019-0147-6 PubMed DOI PMC
Li X., Mank J.E., Ban L. (2024) The grasshopper genome reveals long‐term gene content conservation of the X chromosome and temporal variation in X chromosome evolution. Genome Research, 34, 997–1007. 10.1101/gr.278794.123 PubMed DOI PMC
Liang S.C., Hartwig B., Perera P., Mora‐García S., de Leau E., Thornton H., de Alves F.L., Rapsilber J., Yang S., James G.V., Schneeberger K., Finnegan E.J., Turck F., Goodrich J. (2015) Kicking against the PRCs – A domesticated transposase Antagonises silencing mediated by Polycomb group proteins and is an accessory component of Polycomb repressive complex 2. PLoS Genetics, 11, e1005660. 10.1371/journal.pgen.1005660 PubMed DOI PMC
Liehr T. (2021) Repetitive elements in humans. International Journal of Molecular Sciences, 22, 2072. 10.3390/ijms22042072 PubMed DOI PMC
Liu Z., Fan M., Yue E.‐K., Li Y., Tao R.‐F., Xu H.‐M., Duan M.‐H., Xu J.‐H. (2020) Natural variation and evolutionary dynamics of transposable elements in Brassica oleracea based on next‐generation sequencing data. Horticulture Research, 7, 145. 10.1038/s41438-020-00367-0 PubMed DOI PMC
Lockton S., Ross‐Ibarra J., Gaut B.S. (2008) Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proceedings of the National Academy of Sciences of the United States of America, 105, 13965–13970. 10.1073/pnas.080467110 PubMed DOI PMC
Lu J.Y., Chang L., Li T., Wang T., Yin Y., Zhan G., Han X., Zhang K., Tao Y., Percharde M., Wang L., Peng Q., Yan P., Zhang H., Bi X., Shao W., Hong Y., Wu Z., Ma R., Wang P., Li W., Zhang J., Chang Z., Hou Y., Zhu B., Ramalho‐Santos M., Li P., Xie W., Na J., Sun Y., Shen X. (2021) Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Research, 31, 613–630. 10.1038/s41422-020-00466-6 PubMed DOI PMC
Macas J., Koblizkova A., Navratilova A., Neumann P. (2009) Hypervariable 3′UTR region of plant LTR‐retrotransposons as a source of novel satellite repeats. Gene, 448, 198–206. 10.1016/j.gene.2009.06.014 PubMed DOI
Macas J., Novák P., Pellicer J., Čížková J., Koblížková A., Neumann P., Fuková I., Doležel J., Kelly L.J., Leitch I.J. (2015) In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One, 10, e0143424. 10.1371/journal.pone.014342 PubMed DOI PMC
Martinez G., Choudury S.G., Slotkin R.K. (2017) tRNA‐derived small RNAs target transposable element transcripts. Nucleic Acids Research, 45, 5142–5152. 10.1093/nar/gkx103 PubMed DOI PMC
Mason J.M., Frydrychova R.C., Biessmann H. (2008) Drosophila telomeres: An exception providing new insights. BioEssays, 30, 25–37. 10.1002/bies.20688 PubMed DOI PMC
McCue A.D., Nuthikattu S., Slotkin R.K. (2013) Genome‐wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biology, 10, 1379–1395. 10.4161/rna.25555 PubMed DOI PMC
Ming R., Vanburen R., Liu Y., Yang M., Han Y., Li L.T., Zhang Q., Kim M.J., Schatz M.C., Campbell M., Li J., Bowers J.E., Tang H., Lyons E., Ferguson A.A., Narzisi G., Nelson D.R., Blaby‐Haas C.E., Gschwend A.R., Jiao Y., Der JP Z.F., Han J., Min X.J., Hudson K.A., Singh R., Grennan A.K., Karpowicz S.J., Watling J.R., Ito K., Robinson S.A., Hudson M.E., Yu Q., Mockler T.C., Carroll A., Zheng Y., Sunkar R., Jia R., Chen N., Arro J., Wai C.M., Wafula E., Spence A., Han Y., Xu L., Zhang J., Peery R., Haus M.J., Xiong W., Walsh J.A., Wu J., Wang M.L., Zhu Y.J., Paull R.E., Britt A.B., Du C., Downie S.R., Schuler M.A., Michael T.P., Long S.P., Ort D.R., Schopf J.W., Gang D.R., Jiang N., Yandell M., dePamphilis C.W., Merchant S.S., Paterson A.H., Buchanan B.B., Li S., Shen‐Miller J. (2013) Genome of the long‐living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 14, R41. 10.1186/gb-2013-14-5-r41 PubMed DOI PMC
Modzelewski A.J., Chong G.J., Wang T., Gan Chong J., He L. (2022) Mammalian genome innovation through transposon domestication. Nature Cell Biology, 24, 1332–1340. 10.1038/s41556-022-00970-4 PubMed DOI PMC
Moraga C., Branco C., Rougemont Q., Veltsos P., Jedlička P., Muyle A., Hanique M., Tannier E., Liu X., Mendoza‐Galindo E., Lemaitre C., Fields P.D., Cruaud C., Labadie K., Belser C., Briolay J., Santoni S., Cegan R., Linheiro R., de la Vega R.C.R., Adam G., Filali A.E., Mossion V., Boualem A., Tavares R., Chebbi A., Cordaux R., Fruchard C., Prentout D., Velt A., Spataro B., Delmotte S., Weingartner L., Toegelová H., Tulpová Z., Cápal P., Šimková H., Štorchová H., Krüger M., Abeyawardana O.A.J., Taylor D.R., Olson M.S., Sloan D.B., Karrenberg S., Delph L.F., Charlesworth D., Giraud T., Bendahmane A., Genova A.D., Madoui A., Hobza R., Marais G.A.B. (2023) The Silene latifolia genome and its giant Y chromosome. bioRxiv, 2023.09.21.558754. 10.1101/2023.09.21.558754 PubMed DOI PMC
Morgante M., Brunner S., Pea G., Fengler K., Zuccolo A., Rafalski A. (2005) Gene duplication and exon shuffling by Helitron‐like transposons generate intraspecies diversity in maize. Nature Genetics, 37, 997–1002. 10.1038/ng1615 PubMed DOI
Muiño J.M., De Bruijn S., Pajoro A., Geuten K., Vingron M., Angenent G.C., Kaufmann K. (2016) Evolution of DNA‐binding sites of a floral master regulatory transcription factor. Molecular Biology and Evolution, 33, 185–200. 10.1093/molbev/msv210 PubMed DOI PMC
Naish M., Henderson I.R. (2024) The structure, function, and evolution of plant centromeres. Genome Research, 34, 161–178. 10.1101/gr.278409.123 PubMed DOI PMC
Naito K., Monden Y., Yasuda K., Saito H., Okumoto Y. (2014) mPing: The bursting transposon. Breeding Science, 64, 109–114. 10.1270/jsbbs.64.109 PubMed DOI PMC
Naito K., Zhang F., Tsukiyama T., Saito H., Hancock C.N., Richardson A.O., Okumoto Y., Tanisaka T., Wessler S.R. (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature, 461, 1130–1134. 10.1038/nature08479 PubMed DOI
Neumann P., Navrátilová A., Koblížková A., Kejnovský E., Hřibová E., Hobza R., Widmer A., Doležel J., Macas J. (2011) Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mobile DNA, 2, 4. 10.1186/1759-8753-2-4 PubMed DOI PMC
Nguyen A.H., Wang W., Chong E., Chatla K., Bachtrog D. (2022) Transposable element accumulation drives size differences among polymorphic Y chromosomes in drosophila. Genome Research, 32, 1074–1088. 10.1101/gr.275996.121 PubMed DOI PMC
Niki H. (2014) Schizosaccharomyces japonicus: The fission yeast is a fusion of yeast and hyphae. Yeast, 31, 83–90. 10.1002/yea.2996 PubMed DOI
Niu X., Xu Y., Li Z., Bian Y., Hou X., Chen J., Zou Y., Jiang J., Wu Q., Ge S., Balasubramanian S., Guo Y. (2019) Transposable elements drive rapid phenotypic variation in Capsella rubella. Proceedings of the National Academy of Sciences of the United States of America, 116, 6908–6913. 10.1073/pnas.1811498116 PubMed DOI PMC
Novak P., Guignard M.S., Neumann P., Kelly L.J., Mlinarec J., Koblizkova A., Dodsworth S., Kovařík A., Pellicer J., Wang W., Macas J., Leitch I.J., Leitch A.R. (2020) Repeat‐sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 6, 1325–1329. 10.1038/s41477-020-00785-x PubMed DOI
Ohtsu K., Smith M.B., Emrich S.J., Borsuk L.A., Zhou R., Chen T., Zhang X., Timmermans M.C.P., Beck J., Buckner B., Janick‐Buckner D., Nettleton D., Scanlon M.J., Schnable P.S. (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant Journal, 52, 391–404. 10.1111/j.1365-313X.2007.03244.x PubMed DOI PMC
Orozco‐Arias S., Dupeyron M., Gutiérrez.Duque D., Tabares‐Soto R., Guyot R. (2023) High nucleotide similarity of three Copia lineage LTR retrotransposons among plant genomes. Genome, 66, 51–61. 10.1139/gen-2022-0026 PubMed DOI
Peterson‐Burch B.D., Nettleton D., Voytas D.F. (2004) Genomic neighborhoods for Arabidopsis retrotransposons: A role for targeted integration in the distribution of the Metaviridae. Genome Biology, 5, R78. 10.1186/gb-2004-5-10-r78 PubMed DOI PMC
Pietzenuk B., Markus C., Gaubert H., Bagwan N., Merotto A., Bucher E., Pecinka A. (2016) Recurrent evolution of heat‐responsiveness in Brassicaceae COPIA elements. Genome Biology, 17, 209. 10.1186/s13059-016-1072-3 PubMed DOI PMC
Puterova J., Kubat Z., Kejnovsky E., Jesionek W., Cizkova J., Vyskot B., Hobza R. (2018) The slowdown of Y chromosome expansion in dioecious PubMed DOI PMC
Qiu Y., Köhler C. (2020) Mobility connects: Transposable elements wire new transcriptional networks by transferring transcription factor binding motifs. Biochemical Society Transactions, 48, 1005–1017. 10.1042/BST20190937 PubMed DOI PMC
Quadrana L. (2020) The contribution of transposable elements to transcriptional novelty in plants: The FLC affair. Transcription, 11, 192–198. 10.1080/21541264.2020.1803031 PubMed DOI PMC
Quadrana L., Bortolini Silveira A., Mayhew G.F., LeBlanc C., Martienssen R.A., Jeddeloh J.A., Colot V. (2016) The Arabidopsis thaliana mobilome and its impact at the species level. eLife, 5, e15716. 10.7554/eLife.15716 PubMed DOI PMC
Quesneville H. (2020) Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mobile DNA, 11, 28. 10.1186/s13100-020-00223-x PubMed DOI PMC
Reinders J., Mirouze M., Nicolet J., Paszkowski J. (2013) Parent‐of‐origin control of transgenerational retrotransposon proliferation in Arabidopsis. EMBO Reports, 14, 823–828. 10.1038/embor.2013.95 PubMed DOI PMC
Ribeiro T., Vasconcelos E., dos Santos K.G.B., Vaio M., Brasileiro‐Vidal A.C., Pedrosa‐Harand A. (2020) Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi. Chromosome Research, 28, 139–153. 10.1007/s10577-019-09618-w PubMed DOI
Roffler S., Wicker T. (2015) Genome‐wide comparison of Asian and African rice reveals high recent activity of DNA transposons. Mobile DNA, 6, 8. 10.1186/s13100-015-0040-x PubMed DOI PMC
Roquis D., Robertson M., Yu L., Thieme M., Julkowska M., Bucher E. (2021) Genomic impact of stress‐induced transposable element mobility in Arabidopsis. Nucleic Acids Research, 49, 10431–10447. 10.1093/nar/gkab828 PubMed DOI PMC
Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L., Graves T.A., Minx P., Reily A.D., Courtney L., Kruchowski S.S., Tomlinson C., Strong C., Delehaunty K., Fronick C., Courtney B., Rock S.M., Belter E., du F., Kim K., Abbott R.M., Cotton M., Levy A., Marchetto P., Ochoa K., Jackson S.M., Gillam B., Chen W., Yan L., Higginbotham J., Cardenas M., Waligorski J., Applebaum E., Phelps L., Falcone J., Kanchi K., Thane T., Scimone A., Thane N., Henke J., Wang T., Ruppert J., Shah N., Rotter K., Hodges J., Ingenthron E., Cordes M., Kohlberg S., Sgro J., Delgado B., Mead K., Chinwalla A., Leonard S., Crouse K., Collura K., Kudrna D., Currie J., He R., Angelova A., Rajasekar S., Mueller T., Lomeli R., Scara G., Ko A., Delaney K., Wissotski M., Lopez G., Campos D., Braidotti M., Ashley E., Golser W., Kim H.R., Lee S., Lin J., Dujmic Z., Kim W., Talag J., Zuccolo A., Fan C., Sebastian A., Kramer M., Spiegel L., Nascimento L., Zutavern T., Miller B., Ambroise C., Muller S., Spooner W., Narechania A., Ren L., Wei S., Kumari S., Faga B., Levy M.J., McMahan L., van Buren P., Vaughn M.W., Ying K., Yeh C.T., Emrich S.J., Jia Y., Kalyanaraman A., Hsia A.P., Barbazuk W.B., Baucom R.S., Brutnell T.P., Carpita N.C., Chaparro C., Chia J.M., Deragon J.M., Estill J.C., Fu Y., Jeddeloh J.A., Han Y., Lee H., Li P., Lisch D.R., Liu S., Liu Z., Nagel D.H., McCann M.C., SanMiguel P., Myers A.M., Nettleton D., Nguyen J., Penning B.W., Ponnala L., Schneider K.L., Schwartz D.C., Sharma A., Soderlund C., Springer N.M., Sun Q., Wang H., Waterman M., Westerman R., Wolfgruber T.K., Yang L., Yu Y., Zhang L., Zhou S., Zhu Q., Bennetzen J.L., Dawe R.K., Jiang J., Jiang N., Presting G.G., Wessler S.R., Aluru S., Martienssen R.A., Clifton S.W., McCombie W.R., Wing R.A., Wilson R.K. (2009) The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112–1115. 10.1126/science.1178534 PubMed DOI
Schorn A., Gutbrod M.J., LeBlanc C., Martienssen R. (2017) LTR‐retrotransposon control by tRNA‐derived small RNAs. Cell, 170, 61–71. 10.1016/j.cell.2017.06.013 PubMed DOI PMC
Schrader L., Schmitz J. (2019) The impact of transposable elements in adaptive evolution. Molecular Ecology, 28, 1537–1549. 10.1111/mec.14794 PubMed DOI
Schreiber M., Gao Y., Koch N., Fuchs J., Heckmann S., Himmelbach A., Börner A., Özkan H., Maurer A., Stein N., Mascher M., Dreissig S. (2022) Recombination landscape divergence between populations is marked by larger low‐recombining regions in domesticated Rye. Molecular Biology and Evolution, 39, msac131. 10.1093/molbev/msac131 PubMed DOI PMC
Shen J., Liu J., Xie K., Xing F., Xiong F., Xiao J., Li X., Xiong L. (2017) Translational repression by a miniature inverted‐repeat transposable element in the 3′ untranslated region. Nature Communications, 8, 1–10. 10.1038/ncomms14651 PubMed DOI PMC
Shimada A., Cahn J., Ernst E., Lynn J., Grimanelli D., Henderson I., Kakutani T., Martienssen R.A. (2024) Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs. Nature Plants, 10, 1304–1316. 10.1038/s41477-024-01773-1 PubMed DOI PMC
Sigman M.J., Slotkin R.K. (2016) The first rule of plant transposable element silencing: Location, location, location. The Plant Cell, 28, 304–313. 10.1105/tpc.15.00869 PubMed DOI PMC
Souza A., Bellot S., Fuchs J., Houben A., Renner S.S. (2016) Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. The Plant Journal, 88, 387–396. 10.1111/tpj.13254 PubMed DOI
Steflova P., Tokan V., Vogel I., Lexa M., Macas J., Novak P., Hobza R., Vyskot B., Kejnovsky E. (2013) Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biology and Evolution, 5, 769–782. 10.1093/gbe/evt049 PubMed DOI PMC
Stritt C., Gordon S.P., Wicker T., Vogel J.P., Roulin A.C. (2018) Recent activity in expanding populations and purifying selection have shaped transposable element landscapes across natural accessions of the Mediterranean grass Brachypodium distachyon. Genome Biology and Evolution, 10, 304–318. 10.1093/gbe/evx276 PubMed DOI PMC
Sultana T., Zamborlini A., Cristofari G., Lesage P. (2017) Integration site selection by retroviruses and transposable elements in eukaryotes. Nature Reviews Genetics, 18, 292–308. 10.1038/nrg.2017.7 PubMed DOI
Tian Z., Rizzon C., Du J., Zhu L., Bennetzen J.L., Jackson S.A., Gaut B.S., Ma J. (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Research, 19, 2221–2230. 10.1101/gr.083899.108 PubMed DOI PMC
Tiley G.P., Burleigh J.G. (2015) The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evolutionary Biology, 15, 194. 10.1186/s12862-015-0473-3 PubMed DOI PMC
Tower J., Karpen G.H., Craig N., Spradling A.C. (1993) Preferential transposition of drosophila P elements to nearby chromosomal sites. Genetics, 133, 347–359. 10.1093/genetics/133.2.347 PubMed DOI PMC
Turlure F., Devroe E., Silver P.A., Engelman A. (2004) Human cell proteins and human immunodeficiency virus DNA integration. Frontiers in Bioscience, 9, 3187–3208. 10.2741/1472 PubMed DOI
Underwood C.J., Choi K. (2019) Heterogeneous transposable elements as silencers, enhancers and targets of meiotic recombination. Chromosoma, 128, 279–296. 10.1007/s00412-019-00718-4 PubMed DOI
Underwood C.J., Choi K., Lambing C., Zhao X., Serra H., Borges F., Simorowski J., Ernst E., Jacob Y., Henderson I.R., Martienssen R.A. (2018) Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non‐CG DNA methylation. Genome Research, 28, 519–531. 10.1101/gr.227116.117 PubMed DOI PMC
Velanis C.N., Perera P., Thomson B., de Leau E., Liang S.C., Hartwig B., Förderer A., Thornton H., Arede P., Chen J., Webb K.M., Gümüs S., De Jaeger G., Page C.A., Hancock C.N., Spanos C., Rappsilber J., Voigt P., Turck F., Wellmer F., Goodrich J. (2020) The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb repressive complex 2 (PRC2). PLoS Genetics, 16, e1008681. 10.1371/journal.pgen.1008681 PubMed DOI PMC
Velasco R., Zharkikh A., Affourtit J., Dhingra A., Cestaro A., Kalyanaraman A., Fontana P., Bhatnagar S.K., Troggio M., Pruss D., Salvi S., Pindo M., Baldi P., Castelletti S., Cavaiuolo M., Coppola G., Costa F., Cova V., Dal Ri A., Goremykin V., Komjanc M., Longhi S., Magnago P., Malacarne G., Malnoy M., Micheletti D., Moretto M., Perazzolli M., Si‐Ammour A., Vezzulli S., Zini E., Eldredge G., Fitzgerald L.M., Gutin N., Lanchbury J., Macalma T., Mitchell J.T., Reid J., Wardell B., Kodira C., Chen Z., Desany B., Niazi F., Palmer M., Koepke T., Jiwan D., Schaeffer S., Krishnan V., Wu C., Chu V.T., King S.T., Vick J., Tao Q., Mraz A., Stormo A., Stormo K., Bogden R., Ederle D., Stella A., Vecchietti A., Kater M.M., Masiero S., Lasserre P., Lespinasse Y., Allan A.C., Bus V., Chagné D., Crowhurst R.N., Gleave A.P., Lavezzo E., Fawcett J.A., Proost S., Rouzé P., Sterck L., Toppo S., Lazzari B., Hellens R.P., Durel C.‐E., Gutin A., Bumgarner R.E., Gardiner S.E., Skolnick M., Egholm M., Van de Peer Y., Salamini F., Viola R. (2010) The genome of the domesticated apple (malus × domestica Borkh.). Nature Genetics, 42, 833–839. 10.1038/ng.654 PubMed DOI
Vergara Z., Gutierrez C. (2017) Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biology, 18, 96. 10.1186/s13059-017-1236-9 PubMed DOI PMC
Vicient C.M. (2010) Transcriptional activity of transposable elements in maize. BMC Genomics, 11, 601. 10.1186/1471-2164-11-601 PubMed DOI PMC
Vondrak T., Robledillo A., Novak P., Koblizkova A., Neumann P., Macas J. (2020) Characterization of repeat arrays in ultra‐long nanopore reads reveals frequent origin of satellite DNA from retrotransposon‐derived tandem repeats. The Plant Journal, 101, 484–500. 10.1111/tpj.14546 PubMed DOI PMC
Wei K.H.‐C., Gibilisco L., Bachtrog D. (2020) Epigenetic conflict on a degenerating Y chromosome increases mutational burden in drosophila males. Nature Communications, 11, 5537. 10.1038/s41467-020-19134-9 PubMed DOI PMC
Wessler S.R. (1995) LTR‐retrotransposons and MITEs: Important players in the evolution of plant genomes. Current Opinion in Genetics & Development, 5, 814–821. 10.1016/0959-437X(95)80016-X PubMed DOI
West P.T., Li Q., Ji L., Eichten S.R., Song J., Vaughn M.W., Schmitz R.J., Springer N.M. (2014) Genomic distribution of H3K9me2 and DNA methylation in a maize genome. PLoS One, 9, 1–10. 10.1371/journal.pone.0105267 PubMed DOI PMC
Wicker T., Gundlach H., Spannagl M., Uauy C., Borrill P., Ramírez‐González R.H., De Oliveira R., International Wheat Genome Sequencing Consortium , Mayer K.F.X., Paux E., Choulet F. (2018) Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biology, 19, 103. 10.1186/s13059-018-1479-0 PubMed DOI PMC
Wlodzimierz P., Rabanal F.A., Burns R., Naish M., Primetis E., Scott A., Mandáková T., Gorringe N., Tock A.J., Holland D., Fritschi K., Habring A., Lanz C., Patel C., Schlegel T., Collenberg M., Mielke M., Nordborg M., Roux F., Shirsekar G., Alonso‐Blanco C., Lysak M.A., Novikova P.Y., Bousios A., Weigel D., Henderson I.R. (2023) Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature, 618, 557–565. 10.1038/s41586-023-06062-z PubMed DOI
Wyrick J.J., Aparicio J.G., Chen T., Barnett J.D., Jennings E.G., Young R.A., Bell S.P., Aparicio O.M. (2001) Genome‐wide distribution of ORC and MCM proteins in S. Cerevisiae: High‐resolution mapping of replication origins. Science, 294, 2357–2360. 10.1126/science.1066101 PubMed DOI
Yang G., Zhang F., Hancock C.N., Wessler S.R. (2007) Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 10962–10967. 10.1073/pnas.0702080104 PubMed DOI PMC
Yang L., Bennetzen J.L. (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 106, 19922–19927. 10.1073/pnas.0908008106 PubMed DOI PMC
Yang L., Bennetzen J.L. (2009a) Structure‐based discovery and description of plant and animal Helitrons. Proceedings of the National Academy of Sciences of the United States of America, 106, 12832–12837. 10.1073/pnas.0905563106 PubMed DOI PMC
Zeller G., Henz S.R., Widmer C.K., Sachsenberg T., Rätsch G., Weigel D., Laubinger S. (2009) Stress‐induced changes in the Arabidopsis thaliana transcriptome analyzed using whole‐genome tiling arrays. The Plant Journal, 58, 1068–1082. 10.1111/j.1365-313X.2009.03835.x PubMed DOI
Zervudacki J., Yu A., Amesefe D., Wang J., Drouaud J., Navarro L., Deleris A. (2018) Transcriptional control and exploitation of an immune‐responsive family of plant retrotransposons. The EMBO Journal, 37, e98482. 10.15252/embj.201798482 PubMed DOI PMC
Zhang L., Liang J., Chen H., Zhang Z., Wu J., Wang X. (2023) A near‐complete genome assembly of Brassica rapa provides new insights into the evolution of centromeres. Plant Biotechnology Journal, 21, 1022–1032. 10.1111/pbi.14015 PubMed DOI PMC
Zhang X., Feschotte C., Zhang Q., Jiang N., Eggleston W.B., Wessler S.R. (2001) P instability factor: An active maize transposon system associated with the amplification of tourist‐like MITEs and a new superfamily of transposases. Proceedings of the National Academy of Sciences of the United States of America, 98, 12572–12577. 10.1073/pnas.211442198 PubMed DOI PMC
Zhang Y., Li Z., Zhang Y., Lin K., Peng Y., Ye L., Zhuang Y., Wang M., Xie Y., Guo J., Teng W., Tong Y., Zhang W., Xue Y., Lang Z., Zhang Y. (2021) Evolutionary rewiring of the wheat transcriptional regulatory network by lineage‐specific transposable elements. Genome Research, 31, 2276–2289. 10.1002/adfm.202003619 PubMed DOI PMC
Zhao D., Ferguson A.A., Jiang N. (2016) What makes up plant genomes: The vanishing line between transposable elements and genes. Biochimica et Biophysica Acta, 1859, 366–380. 10.1016/j.bbagrm.2015.12.005 PubMed DOI
Factors determining chromosomal localization of transposable elements in plants