Nucleic acids movement and its relation to genome dynamics of repetitive DNA: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components?: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components?

. 2022 Apr ; 44 (4) : e2100242. [epub] 20220203

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35112737

There is growing evidence of evolutionary genome plasticity. The evolution of repetitive DNA elements, the major components of most eukaryotic genomes, involves the amplification of various classes of mobile genetic elements, the expansion of satellite DNA, the transfer of fragments or entire organellar genomes and may have connections with viruses. In addition to various repetitive DNA elements, a plethora of large and small RNAs migrate within and between cells during individual development as well as during evolution and contribute to changes of genome structure and function. Such migration of DNA and RNA molecules often results in horizontal gene transfer, thus shaping the whole genomic network of interconnected species. Here, we propose that a high evolutionary dynamism of repetitive genome components is often related to the migration/movement of DNA or RNA molecules. We speculate that the cytoplasm is probably an ideal compartment for such evolutionary experiments.

Zobrazit více v PubMed

López-Flores, I., & Garrido-Ramos, M. A. (2012). The repetitive DNA content of eukaryotic genomes. Genome Dynamics, 7, 1-28.

Mehrotra, S., & Goyal, V. (2014). Repetitive sequences in plant nuclear DNA: Types, distribution, evolution and function. Genomics, Proteomics & Bioinformatics, 12, 164.

Klein, S. J., & O'neill, R. J. (2018). Transposable elements: Genome innovation, chromosome diversity, and centromere conflict. Chromosome Research: An International Journal of Molecular Sciences Supramolecular Evolutionary Aspects of Chromosome Biology, 26, 5-23.

Lu, J. Y., Chang, L., Li, T., Wang, T., Yin, Y., Zhan, G., Han, X., Zhang, K., Tao, Y., Percharde, M., Wang, L., Peng, Q., Yan, P., Zhang, H., Bi, X., Shao, W., Hong, Y., Wu, Z., Ma, R., Wang, P., Li, W., Zhang, J., Chang, Z., Hou, Y., Zhu, B., Ramalho-Santos, M., Li, P., Xie, W., Na, J., Sun, Y., Shen, X., Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome Cell Research 2021, 31(6), 613-630.

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., & Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376-380.

Raviram, R., Rocha, P. P., Luo, V. M., Swanzey, E., Miraldi, E. R., Chuong, E. B., Feschotte, C., Bonneau, R., & Skok, J. A. (2018). Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biology, 19, 1-19.

Cournac, A., Koszul, R., & Mozziconacci, J. (2016). The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Research, 44, 245-255.

Winter, D. J., Ganley, A. R. D., Young, C. A., Liachko, I., Schardl, C. L., Dupont, P. - Y., Berry, D., Ram, A., Scott, B., & Cox, M. P. (2018). Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë Festucae. PLoS Genet., 14, e1007467.

Qiu, Y., & Köhler, C. (2020). Mobility connects: Transposable elements wire new transcriptional networks by transferring transcription factor binding motifs. Biochem. Soc. Trans., 48, 1005-1017.

Schrader, L., Kim, J. W., Ence, D., Zimin, A., Klein, A., Wyschetzki, K., Weichselgartner, T., Kemena, C., Stökl, J., Schultner, E., Wurm, Y., Smith, C. D., Yandell, M., Heinze, J., Gadau, J., & Oettler, J. (2014). Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun., 16(5), 5495.

Feschotte, C. (2008). Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet., 9, 397-405.

Mcclintock, B. (1950). The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences of USA, 36, 344-355

Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., Sanmiguel, P., & Schulman, A. H. (2007). A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet., 8, 973-982.

Gilbert, C., & Feschotte, C. (2018). Horizontal acquisition of transposable elements and viral sequences: Patterns and consequences. Curr. Opin. Genet. Dev., 49, 15-24.

Levin, H. L., & Moran, J. V. (2011). Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet., 12, 615-627.

Sabot, F., & Schulman, A. H. (2006). Parasitism and the retrotransposon life cycle in plants: A hitchhiker‘s guide to the genome. Heredity, 97, 381-388.

Mccarrey, J. R., & Thomas, K. (1987). Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature, 326, 501-505.

Lerat, E., & Capy, P. (1999). Retrotransposons and retroviruses: Analysis of the envelope gene. Molecular Biology & Evolution, 16, 1198-1207.

Leitch, A. R. (2007). Conserved gene order belies rapid genome turnover: The dynamic interplay between genomic DNA and the outside world. Heredity, 98, 61-62.

Krupovic, M., & Koonin, E. V. (2015). Polintons: A hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol., 13, 105-115.

Krupovic, M., & Koonin, E. V. (2017). Multiple origins of viral capsid proteins from cellular ancestors. Proceedings of the National Academy of Sciences of USA, 114, E2401-E2410.

Koonin, E. V., Dolja, V. V., & Krupovic, M. (2015). Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology, 479-480, 2-25.

Krupovic, M., Yutin, N., & Koonin, E. V. (2016). Fusion of a superfamily 1 helicase and an inactivated DNA polymerase is a signature of common evolutionary history of Polintons, polinton-like viruses, Tlr1 transposons and transpovirons. Virus Evolution, 2, vew019.

Charlesworth, B. (1991). The evolution of sex chromosomes. Science, 251, 1030-1033.

Nuzhdin, S. V. (1999). Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica, 107, 129-137.

Brady, T. L., Schmidt, C. L., & Voytas, D. F. (2008). Targeting integration of the Saccharomyces Ty5 retrotransposon. Methods in Molecular Biology, 435, 153-63.

Jedlicka, P., Lexa, M., Vanat, I., Hobza, R., & Kejnovsky, E. (2019). Nested plant LTR retrotransposons target specific regions of other elements, while all LTR retrotransposons often target palindromes and nucleosome-occupied regions: In silico study. Mobile DNA, 10, 50.

Jiang, X. Q., Tang, H. X., Ismail, W. M., & Lynch, M. (2018). A maximum-likelihood approach to estimating the insertion frequencies of transposable elements from population sequencing data. Molecular Biology & Evolution, 35(10), 2560-71.

Hurst, G. D. D., & Werren, J. H. (2001). The role of selfish genetic elements in eukaryotic evolution. Nat. Rev. Genet., 2, 597-606.

Cam, H. P., Noma, K.- I., Ebina, H., Levin, H. L., & Grewal, S. I. S. (2008). Host genome surveillance for retrotransposons by transposon-derived proteins. Nature, 451, 431-436.

Gerasimova, T. I., Byrd, K., & Corces, V. G. (2000). A chromatin insulator determines the nuclear localization of DNA. Mol. Cell, 6, 1025-1035.

Chaumeil, J., LeBaccon, P., Wutz, A., & Heard, E. (2006). A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev., 20, 2223-2237.

Lyon, M. (1998). X-chromosome inactivation: A repeat hypothesis. Cytogenetics and Cell Genetics, 80(133), 137.

Hall, L. L., & Lawrence, J. B. (2016). RNA as a fundamental component of interphase chromosomes: Could repeats prove key? Curr. Opin. Genet. Dev., 37, 137-147.

Ugarković, Ð., & Plohl, M. (2002). Variation in satellite DNA profiles - causes and effects. EMBO J., 21, 5955-5959.

Garrido-Ramos, M. (2017). Satellite DNA: An Evolving Topic. Genes, 8, 230.

Cohen, S., Agmon, N., Sobol, O., & Segal, D. (2010). Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mobile DNA, 1, 11.

Cohen, S., & Segal, D. (2009). Extrachromosomal circular DNA in eukaryotes: Possible involvement in the plasticity of tandem repeats. Cytogenetic and Genome Research, 124, 327-338.

Kapitonov, V. V., & Jurka, J. (2001). Rolling-circle transposons in eukaryotes. Proceedings of the National Academy of Sciences of USA, 98, 8714-8719.

Lal, S. K., & Hannah, L. C. (2005). Plant genomes: Massive changes of the maize genome are caused by Helitrons. Heredity, 95, 421-422.

Badouin, H., Gouzy, J., Grassa, C. J., Murat, F., Staton, S. E., Cottret, L., Lelandais-Brière, C., Owens, G. L., Carrère, S., Mayjonade, B., Legrand, L., Gill, N., Kane, N. C., Bowers, J. E., Hubner, S., Bellec, A., Bérard, A., Bergès, H., Blanchet, N., … Langlade, N. B. (2017). The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 546, 148-152.

Kejnovsky, E., Kubat, Z., Macas, J., Hobza, R., Mracek, J., & Vyskot, B. (2006). Retand: A novel family of gypsy-like retrotransposon harboring an amplified tandem repeat. Mol. Genet. Genomics, 276, 254-263.

Macas, J., Koblížková, A., Navrátilová, A., & Neumann, P. (2009). Hypervariable 3’UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene, 448, 198-206.

Meštrović, N., Mravinac, B., Pavlek, M., Vojvoda-Zeljko, T., Šatović, E., & Plohl, M. (2015). Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res., 23, 583-596.

Platt, R. N., Vandewege, M. W., & Ray, D. A. (2018). Mammalian transposable elements and their impacts on genome evolution. Chromosome Research: an International Journal of Molecular Sciences Supramolecular Evolutionary Aspects of Chromosome Biology, 26, 25-43.

Kumar, S., & Mohapatra, T. (2021). Dynamics of DNA methylation and its functions in plant growth and development. Frontiers in Plant Science, 12, 596236.

Aravin, A. A., Hannon, G. J., & Brennecke, J. (2007). The Piwi-piRNA pathway provides an adaptive defense in the transposon arm race. Science, 318, 761-764.

Smalheiser, N., & Torvik, V. (2005). Mammalian microRNAs derived from genomic repeats. Trends Genet., 21, 322-326.

Piriyapongsa, J., Mariño-Ramírez, L., & Jordan, I. K. (2007). Origin and evolution of human microRNAs from transposable elements. Genetics, 176, 1323-1337.

Cho, J. (2018). Transposon-derived non-coding RNAs and their function in plants. Frontiers in Plant Science, 9, 1. https://doi.org/10.3389/fpls.2018.00600.

Spengler, R. M., Oakley, C. K., & Davidson, B. L. (2014). Functional MicroRNAs and target sites are created by lineage-specific transposition. Hum. Mol. Genet., 23, 1783.

Piriyapongsa, J., & Jordan, I. K. (2008). Dual coding of SiRNAs and MiRNAs by plant transposable elements. RNA, 14(5), 814.

Malone, C. D., & Hannon, G. J. (2009). Small RNAs as guardian of the genome. Cell, 136, 656-668.

Hyun, S. (2017). Small RNA pathways that protect the somatic genome. Int. J. Mol. Sci., 18, 912.

Ito, H. (2012). Small RNA and transposon silencing in plants. Dev., Growth Differ., 54, 100-107.

Mccue, A. D., & Slotkin, R. K. (2012). Transposable element small RNAs as regulators of gene expression. Trends Genet., 28, 616-623.

Chapman, E. J., & Carrington, J. C. (2007). Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet., 8(11), 884-896.

Slotkin, R. K., Vaughn, M., Borges, F., Tanurdžić, M., Becker, J. D., Feijó, J. A., & Martienssen, R. A. (2009). Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell, 136, 461-472

Martínez, G., Panda, K., Köhler, C., & Slotkin, R. K. (2016). Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nature Plants, 2, 1-8.

Rouget, C., Papin, C., Boureux, A., Meunier, A. -. C., Franco, B., Robine, N., Lai, E. C., Pelisson, A., & Simonelig, M. (2012). Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature, 467, 1128-1132.

Mccue, A. D., Nuthikattu, S., & Slotkin, R. K. (2013). Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biology, 10, 1379-1395.

Nosaka, M., Itoh, J. - I., Nagato, Y., Ono, A., Ishiwata, A., & Sato, Y. (2012). Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. PLoS Genet., 8, e1002953.

Wang, D., Qu, Z., Yang, L., Zhang, Q., Liu, Z. -. H., Do, T., Adelson, D. L., Wang, Z.-Y.u, Searle, I., & Zhu, J. -. K. (2017). Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Plant J., 90, 133-146.

Wang, L., Mai, Y. - X., Zhang, Y. - C., Luo, Q., & Yang, H. - Q. (2010). MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol. Plant, 3, 794-806.

Bernstein, E., & Allis, C. D. (2005). RNA meets chromatin. Genes Dev., 19, 1635-1655.

Topp, C. N., Zhong, C. X., & Dawe, R. K. (2004). Centromere-encoded RNAs are integral components of the maize kinetochore. Proceedings of the National Academy of Sciences of USA, 101, 15986-15991.

Neumann, P., Yan, H., & Jiang, J. (2007). The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics, 176, 749-761.

Schorn, A. J., Gutbrod, M. J., Leblanc, C., & Martienssen, R. (2017). LTR-retrotransposon control by tRNA-derived small RNAs. Cell, 170, 61-71.e11.e11.

Kaessmann, H., Vinckenbosch, N., & Long, M. (2009). RNA-based gene duplication: Mechanistic and evolutionary insights. Nature Review Genetics, 10, 19-31.

Casola, C., & Betrán, E. (2017). The genomic impact of gene retrocopies: What have we learned from comparative genomics, population genomics, and transcriptomic analyses? Genome Biology & Evolution, 9, 1351-1373.

Hebenstreit, D. (2013). Are gene loops the cause of transcriptional noise? Trends Genet., 29, 333-338.

Benner, S. A. (1988). Extracellular “communicator RNA. FEBS Lett., 233, 225-228.

Nozawa, R. - S., & Gilbert, N. (2019). RNA: Nuclear glue for folding the genome. Trends Cell Biol., 29, 201-211.

Vallot, C., Huret, C., Lesecque, Y., Resch, A., Oudrhiri, N., Bennaceur-Griscelli, A., Duret, L., & Rougeulle, C. (2013). XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat. Genet., 45, 239-241.

Bergmann, J. H., Li, J., Eckersley-Maslin, M. A., Rigo, F., Freier, S. M., & Spector, D. L. (2015). Regulation of the ESC transcriptome by nuclear long noncoding RNAs. Genome Res., 25, 1336-1346.

Nozawa, R. -. S., Boteva, L., Soares, D. C., Naughton, C., Dun, A. R., Buckle, A., Ramsahoye, B., Bruton, P. C., Saleeb, R. S., Arnedo, M., Hill, B., Duncan, R. R., Maciver, S. K., & Gilbert, N. (2017). SAF-A regulates interphase chromosome structure through oligomerization with chromatin-associated RNAs. Cell, 169, 1214-1227.e18.

Ideue, T., & Tani, T. (2020). Centromeric non-coding RNAs: Conservation and diversity in function. Non-Coding RNA, 6, 4.

Corless, S., Höcker, S., & Erhardt, S. (2020). Centromeric RNA and its function at and beyond centromeric chromatin. J. Mol. Biol., 432, 4257-4269.

Maizel, A., Markmann, K., Timmermans, M., & Wachter, A.(2020). To move or not to move: Roles and specificity of plant RNA mobility. Curr. Opin. Plant Biol., 57, 52-60.

Molnar, A., Melnyk, C. W., Bassett, A., Hardcastle, T. J., Dunn, R., & Baulcombe, D. C. (2010). Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science, 328, 872-875.

Yang, L., Perrera, V., Saplaoura, E., Apelt, F., Bahin, M., Kramdi, A., Olas, J., Mueller-Roeber, B., Sokolowska, E., Zhang, W., Li, R., Pitzalis, N., Heinlein, M., Zhang, S., Genovesio, A., Colot, V., & Kragler, F. (2019). m(5)C methylation guides systemic transport of messenger RNA over graft junctions in plants. Curr. Biol., 29, 2465-2476.e5.

Zhang, W., Thieme, C. J., Kollwig, G., Apelt, F., Yang, L., Winter, N., Andresen, N., Walther, D., & Kragler, F. (2016). tRNA-related sequences trigger systemic mRNA transport in plants. Plant Cell, 28, 1237-1249.

Li, C., Gu, M., Shi, N., Zhang, H., Yang, X., Osman, T., Liu, Y., Wang, H., Vatish, M., Jackson, S., & Hong, Y. (2011). Mobile FT mRNA contributes to the systemic florigen signalling in floral induction. Sci. Rep., 1, 1-6.

Zhang, T., Zhao, Y. - L., Zhao, J. - H., Wang, S., Jin, Y., Chen, Z.-Q.i, Fang, Y. - Y., Hua, C. - L., Ding, S. - W., & Guo, H. -. S. (2016). Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2, 1-6.

Betti, F., Ladera-Carmona, M. J., Weits, D. A., Ferri, G., Iacopino, S., Novi, G., Svezia, B., Kunkowska, A. B., Santaniello, A., Piaggesi, A., Loreti, E., & Perata, P. (2021). Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nature Plants, 7, 1379-1388.

Jose, A. M. (2015). Movement of Regulatory RNA between Animal Cells. Genesis (New York, N.Y. : 2000), 53, 395-416.

Timmis, J. N., Ayliffe, M. A., Huang, C. Y., & Martin, W. (2004). Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet., 5, 123-135.

Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M., & Penny, D. (2002). Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences of USA, 99, 12246-12251.

Michalovova, M., Vyskot, B., & Kejnovsky, E. (2013). Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: Size, relative age and chromosomal localization. Heredity, 111, 314-320.

Matsuo, M., Ito, Y., Yamauchi, R., & Obokata, J. (2005). The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell, 17, 665-675.

Hazkani-Covo, E., & Covo, S. (2008). Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet., 4, e1000237.

Noutsos, C., Richly, E., & Leister, D. (2005). Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Res., 15, 616-628.

Keeling, P. J., & Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet., 9, 605-618.

Henze, K. (2001). How do mitochondrial genes get into the nucleus? Trends Genet., 17, 383-387.

Ellis, J. (1982). Promiscuous DNA-chloroplast genes inside plant mitochondria. Nature, 299, 678-679.

Turmel, M., Otis, C., & Lemieux, C. (2016). Mitochondrion-to-chloroplast DNA transfers and intragenomic proliferation of chloroplast Group II introns in gloeotilopsis green algae (Ulotrichales, Ulvophyceae). Genome Biology and Evolution, 8, 2789-2805.

Smith, D. R. (2020). Common repeat elements in the mitochondrial and plastid genomes of green algae. Frontiers in Genetics, 11, 465.

Eisen, J. A. (2000). Horizontal gene transfer among microbial genomes: New insights from complete genome analysis. Curr. Opin. Genet. Dev., 10, 606-611.

Schaack, S., Gilbert, C., & Feschotte, C. (2010). Promiscuous DNA: Horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends in Ecology & Evolution, 25, 537-46.

Davis, C. C., & Xi, Z. (2015). Horizontal gene transfer in parasitic plants. Curr. Opin. Plant Biol., 26, 14-19.

Xi, Z., Wang, Y., Bradley, R. K., Sugumaran, M., Marx, C. J., Rest, J. S., & Davis, C. C. (2013). Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genet., 9, e1003265.

Sanchez-Puerta, M. V., García, L. E., Wohlfeiler, J., & Ceriotti, L. F. (2016). Unparalleled replacement of native mitochondrial genes by foreign homologs in a holoparasitic plant. New Phytologist, 214, 376-387.

Zeng, Gupta, Jiang, Yang, Gong, & Zhu, (2019). Cross-kingdom small RNAs among animals, plants and microbes. Cells, 8, 371.

Kim, G., Leblanc, M. L., Wafula, E. K., Depamphilis, C. W., & Westwood, J. H. (2014). Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its host. Science, 345, 808-811.

Gladyshev, E. A., Meselson, M., & Arkhipova, I. R. (2008). Massive horizontal gene transfer in bdelloid rotifers. Science, 320, 1210-1213.

Raychoudhury, R., Baldo, L., Oliveira, D. C. S. G., & Werren, J. H. (2009). Modes of acquisition of Wolbachia: Horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution, 63, 165-183.

Graham, L. A., & Davies, P. L. (2021). Horizontal gene transfer in vertebrates: A fishy tale. Trends in Genetis, 37, 501-503.

Garbian, Y., Maori, E., Kalev, H., Shafir, S., & Sela, I. (2012). Bidirectional transfer of RNAi between honey bee and Varroa destructor: varroa gene silencing reduces Varroa population. PLoS Pathog., 8, e1003035.

Gilbert, C., Schaack, S., Pace Ii, J. K., Brindley, P. J., & Feschotte, C. (2010). A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature, 464, 1347-1350.

Peccoud, J., Loiseau, V., Cordaux, R., & Gilbert, C. (2017). Massive horizontal transfer of transposable elements in insects. Proceedings of the National Academy of Sciences of USA, 114, 4721-4726.

El Baidouri, M., Carpentier, M. -. C., Cooke, R., Gao, D., Lasserre, E., Llauro, C., Mirouze, M., Picault, N., Jackson, S. A., & Panaud, O. (2014). Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res., 24, 831.

Lukacs, G. L., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., & Verkman, A. S. (2000). Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem., 275, 1625-1629.

Lechardeur, D., Sohn, K. -. J., Haardt, M., Joshi, P. B., Monck, M., Graham, R. W., Beatty, B., Squire, J., O'brodovich, H., & Lukacs, G. L. (1999). Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. Gene Ther., 6, 482-497.

Baillie, J. K., Barnett, M. W., Upton, K. R., Gerhardt, D. J., Richmond, T. A., De Sapio, F., Brennan, P. M., Rizzu, P., Smith, S., Fell, M., Talbot, R. T., Gustincich, S., Freeman, T. C., Mattick, J. S., Hume, D. A., Heutink, P., Carninci, P., Jeddeloh, J. A., & Faulkner, G. J. (2011). Somatic retrotransposition alters the genetic landscape of the human brain. Nature, 479, 534-537.

Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosary, P. C., Lehmann, H. S., Parker, J. J., Atabay, K. D., Gilmore, E. C., Poduri, A., Park, P. J., & Walsh, C. A. (2012). Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell, 151, 483-496.

Lee, E., Iskow, R., Yang, L., Gokcumen, O., Haseley, P., Luquette, L. J., Lohr, J. G., Harris, C. C., Ding, L.i, Wilson, R. K., Wheeler, D. A., Gibbs, R. A., Kucherlapati, R., Lee, C., Kharchenko, P. V., & Park, P. J. (2012). Landscape of somatic retrotransposition in human cancers. Science, 337, 967-971.

Kejnovsky, E., Leitch, I., & Leitch, A. (2009). Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends in Ecology & Evolution, 24, 572-582.

Trifonov, E. N., & Kejnovsky, E. (2016). Acytota - Associated kingdom of neglected life. J. Biomol. Struct. Dyn., 34, 1641-1648.

Kejnovsky, E., & Trifonov, E. N. (2016). Horizontal transfer - Imperative mission of acellular life forms, Acytota. Mobile Genetic Elements, 6, e1154636.

Heng, H. H. Q. (2009). The genome-centric concept: Resynthesis of evolutionary theory. BioEssays, 31, 512-525.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Factors determining chromosomal localization of transposable elements in plants

. 2025 Oct ; 27 (6) : 975-989. [epub] 20250529

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...