Nested plant LTR retrotransposons target specific regions of other elements, while all LTR retrotransposons often target palindromes and nucleosome-occupied regions: in silico study

. 2019 ; 10 () : 50. [epub] 20191214

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31871489

BACKGROUND: Nesting is common in LTR retrotransposons, especially in large genomes containing a high number of elements. RESULTS: We analyzed 12 plant genomes and obtained 1491 pairs of nested and original (pre-existing) LTR retrotransposons. We systematically analyzed mutual nesting of individual LTR retrotransposons and found that certain families, more often belonging to the Ty3/gypsy than Ty1/copia superfamilies, showed a higher nesting frequency as well as a higher preference for older copies of the same family ("autoinsertions"). Nested LTR retrotransposons were preferentially located in the 3'UTR of other LTR retrotransposons, while coding and regulatory regions (LTRs) are not commonly targeted. Insertions displayed a weak preference for palindromes and were associated with a strong positional pattern of higher predicted nucleosome occupancy. Deviation from randomness in target site choice was also found in 13,983 non-nested plant LTR retrotransposons. CONCLUSIONS: We reveal that nesting of LTR retrotransposons is not random. Integration is correlated with sequence composition, secondary structure and the chromatin environment. Insertion into retrotransposon positions with a low negative impact on family fitness supports the concept of the genome being viewed as an ecosystem of various elements.

Erratum v

PubMed

Zobrazit více v PubMed

Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. doi: 10.1186/s13059-018-1577-z. PubMed DOI PMC

Charles M, Belcram H, Just J, Huneau C, Viollet A, Voloux A, et al. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics. 2008;180:1071–1086. doi: 10.1534/genetics.108.092304. PubMed DOI PMC

Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet. 1999;33:479–532. doi: 10.1146/annurev.genet.33.1.479. PubMed DOI

Wicker T, Keller B. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 2007;17:1072–1081. doi: 10.1101/gr.6214107. PubMed DOI PMC

Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–982. doi: 10.1038/nrg2165. PubMed DOI

Llorens C, Munoz-Pomer A, Bernard L, Botella H, Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct. 2009;4:41. doi: 10.1186/1745-6150-4-41. PubMed DOI PMC

Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, et al. The gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39(SUPPL):D70–D74. doi: 10.1093/nar/gkq1061. PubMed DOI PMC

Neumann P, Novak P, Hostakova N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA. 2019;10:1. doi: 10.1186/s13100-018-0144-1. PubMed DOI PMC

Corem S, Doron-Faigenboim A, Jouffroy O, Maumus F, Arazi T, Bouché N. Redistribution of CHH methylation and small interfering RNAs across the genome of tomato ddm1 mutants. Plant Cell. 2018;30:1628–1644. doi: 10.1105/tpc.18.00167. PubMed DOI PMC

Vergara Z, Sequeira-Mendes J, Morata J, Peiró R, Hénaff E, Costas C, et al. Retrotransposons are specified as DNA replication origins in the gene-poor regions of Arabidopsis heterochromatin. Nucleic Acids Res. 2017;45:8358–8368. doi: 10.1093/nar/gkx524. PubMed DOI PMC

Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, et al. International wheat genome sequencing consortium, Mayer KFX, Paux E, Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC

Presting GG, Malysheva L, Fuchs J, Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998;16:721–728. doi: 10.1046/j.1365-313x.1998.00341.x. PubMed DOI

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–556. doi: 10.1038/nature07723. PubMed DOI

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–183. doi: 10.1038/nature08670. PubMed DOI

Sarilar V, Marmagne A, Brabant P, Joets J, Alix K. BraSto, a stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. Plant Mol Biol. 2011;77:59–75. doi: 10.1007/s11103-011-9794-9. PubMed DOI

Brady TL, Schmidt CL, Voytas DF. Targeting integration of the Saccharomyces Ty5 retrotransposon. Methods Mol Biol. 2008;435:153–163. doi: 10.1007/978-1-59745-232-8_11. PubMed DOI

Crenes G, Moundras C, Demattel M, Bigot Y, Petit A, Renault S. Target site selection by the mariner-like elements Mos1. Genetica. 2011;138:509–517. doi: 10.1007/s10709-009-9387-6. PubMed DOI

Sigman MJ, Slotkin RK. The first rule of plant transposable element silencing: location, location, location. Plant Cell. 2016;28:304–313. doi: 10.1105/tpc.15.00869. PubMed DOI PMC

SanMiguel P, Gaut B, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998;20:43–45. doi: 10.1038/1695. PubMed DOI

SanMiguel P, Tikhonov A, Jin Y-K, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–768. doi: 10.1126/science.274.5288.765. PubMed DOI

Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T. Burst of retrotransposition reproduced in Arabidopsis. Nature. 2009;461:423–426. doi: 10.1038/nature08351. PubMed DOI

Sun X, Le HD, Wahlstrom JM, Karpen GH. Sequence analysis of a functional Drosophila centromere. Genome Res. 2003;13:182–194. doi: 10.1101/gr.681703. PubMed DOI PMC

Wei L, Xiao M, An Z, Mason AS, Qian W, Li J, et al. New insights into nested long terminal repeat retrotransposons in Brassica species. Mol Plant. 2013;2:470–482. doi: 10.1093/mp/sss081. PubMed DOI

Levy A, Schwartz S, Ast G. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res. 2010;38:1515–1530. doi: 10.1093/nar/gkp1134. PubMed DOI PMC

Gao C, Xiao M, Ren X, Hayward A, Yin J, Wu L, et al. Characterization and functional annotation of nested transposable elements in eukaryotic genomes. Genomics. 2012;100:222–230. doi: 10.1016/j.ygeno.2012.07.004. PubMed DOI

Lexa M, Lapar R, Jedlicka P, Vanat I, Cervenansky M, Kejnovsky E. Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine, Madrid. 2018. TE-nester: a recursive software tool for structure-based discovery of nested transposable elements; pp. 2776–2778.

Lexa M. http://gitlab.fi.muni.cz/lexa/nested. Accessed 4 Sept 2018.

Ma J, Bennetzen JL. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A. 2004;101:12404–12410. doi: 10.1073/pnas.0403715101. PubMed DOI PMC

Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell. 2003;15:1771–1780. doi: 10.1105/tpc.012559. PubMed DOI PMC

Naughtin M, Haftek-Terreau Z, Xavier J, Meyer S, Silvain M, Jaszczyszyn Y, et al. DNA physical properties and nucleosome positions are major determinants of HIV-1 integrase selectivity. PLoS One. 2015;10:e0129427. doi: 10.1371/journal.pone.0129427. PubMed DOI PMC

Tompitak M, Barkema GT, Schiessel H. Benchmarking and refining probability-based models for nucleosome-DNA interaction. BMC Bioinformatics. 2017;18:157. doi: 10.1186/s12859-017-1569-0. PubMed DOI PMC

Pereira V. Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol. 2004;5:R79. doi: 10.1186/gb-2004-5-10-r79. PubMed DOI PMC

Brookfield JFY. The ecology of the genome - mobile DNA elements and their hosts. Nat Rev Genet. 2005;6:128–136. doi: 10.1038/nrg1524. PubMed DOI

Suoniemi A, Schmidt D, Schulmann AH. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica. 1997;100:219–230. doi: 10.1023/A:1018398016018. PubMed DOI

Mularoni L, Zhou Y, Bowen T, Gangadharan S, Wheelan S, Boeke JD. Retrotransposon Ty1 integration targets specifically positioned asymetric nucleosomal DNA segments in tRNA hotspots. Genome Res. 2012;22:693–703. doi: 10.1101/gr.129460.111. PubMed DOI PMC

Liao G, Rehm EJ, Rubin GM. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000;97:3347–3351. doi: 10.1073/pnas.97.7.3347. PubMed DOI PMC

Linheiro RS, Bergman CM. Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element. Nucleic Acids Res. 2008;36:6199–6208. doi: 10.1093/nar/gkn563. PubMed DOI PMC

Ulanovsky LE, Trifonov EN. Estimation of wedge components in curved DNA. Nature. 1987;326:720–722. doi: 10.1038/326720a0. PubMed DOI

Sultana T, Zamborlini A, Cristofari G, Lesage P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet. 2017;18:292–308. doi: 10.1038/nrg.2017.7. PubMed DOI

Baller JA, Gao J, Stamenova R, Curcio MJ, Voytas DF. A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res. 2012;22:704–713. doi: 10.1101/gr.129585.111. PubMed DOI PMC

Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 2008;18:1073–1083. doi: 10.1101/gr.078261.108. PubMed DOI PMC

Dutta A, Workman JL. Nucleosome positioning: multiple mechanisms toward a unifying goal. Mol Cell. 2012;48:P1–P2. doi: 10.1016/j.molcel.2012.09.015. PubMed DOI

Eichten SR, Allis NA, Makarevitch I, Yeh C-T, Gent JI, Guo L, et al. Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet. 2012;8:e1003127. doi: 10.1371/journal.pgen.1003127. PubMed DOI PMC

Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008;18:359–369. doi: 10.1101/gr.7146408. PubMed DOI PMC

Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC

Presting GG, Malysheva I, Fuchs J, Schubert I. A Ty3/gypsy retrotransposon-like sequences localizes to the centromeric regions of cereal chromosomes. Plant J. 1998;16:721–728. doi: 10.1046/j.1365-313x.1998.00341.x. PubMed DOI

Ananiev EV, Philips RL, Rines HW. A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci U S A. 1998;95:10785–10790. doi: 10.1073/pnas.95.18.10785. PubMed DOI PMC

Grob S, Schmid MW, Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell. 2014;55:678–693. doi: 10.1016/j.molcel.2014.07.009. PubMed DOI

Kejnovsky E, Leitch IJ, Leitch AR. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol. 2009;24:572–582. doi: 10.1016/j.tree.2009.04.010. PubMed DOI

Maumus F, Quesneville H. Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana. Nat Commun. 2014;5:4104. doi: 10.1038/ncomms5104. PubMed DOI PMC

Phytozome. 2018. https://phytozome.jgi.doe.gov/pz/portal.html. Accessed 24 Aug 2018.

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–D1186. doi: 10.1093/nar/gkr944. PubMed DOI PMC

Lj2.5. 2018. ftp://ftp.kazusa.or.jp/pub/lotus/lotus_r2.5/Lj2.5_genome_contigs.fna.gz. Accessed 13 Aug 2018.

Rawat V, Abdelsamad A, Pietzenuk B, Seymour DK, Koenig D, Weigel D, et al. Improving the annotation of Arabidopsis lyrata using RNA-seq data. PLoS One. 2015;10:e0137391. doi: 10.1371/journal.pone.0137391. PubMed DOI PMC

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012;40:D1202–D1210. doi: 10.1093/nar/gkr1090. PubMed DOI PMC

International Brachypodium Initiative et al Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–768. doi: 10.1038/nature08747. PubMed DOI

Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492:423–427. doi: 10.1038/nature11798. PubMed DOI

Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, et al. Genome structure of the legume, Lotus japonicus. DNA Res. 2008;15:227–239. doi: 10.1093/dnares/dsn008. PubMed DOI PMC

Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics. 2014;15:312. doi: 10.1186/1471-2164-15-312. PubMed DOI PMC

Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, et al. The TIGR Rice genome annotation resource: improvements and new features. Nucleic Acids Res. 2007;35:D883–D887. doi: 10.1093/nar/gkl976. PubMed DOI PMC

Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 2018;93:515–533. doi: 10.1111/tpj.13801. PubMed DOI

McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, et al. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2017;93:338–354. doi: 10.1111/tpj.13781. PubMed DOI

Tomato Genome Consortium et al The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635–641. doi: 10.1038/nature11119. PubMed DOI PMC

Sharma SK, Bolser D, de Boer J, Sønderkær M, Amoros W, Carboni MF, et al. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3. 2013;3:2031–2047. doi: 10.1534/g3.113.007153. PubMed DOI PMC

Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–W268. doi: 10.1093/nar/gkm286. PubMed DOI PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Novak P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

RepeatExplorer: discover repeats in your next generation sequencing data. 2018. https://repeatexplorer-elixir.cerit-sc.cz/. Accessed 13 Feb 2019.

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–1423. doi: 10.1093/bioinformatics/btp163. PubMed DOI PMC

The R project for statistical computing. 2018. https://www.R-project.org/. Accessed 8 June 2018.

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. gplots: various R programming tools for plotting data. R package version 3.0.1.1. 2019.

Lj3. 2019. ftp://ftp.kazusa.or.jp/pub/lotus/lotus_r3.0/Lj3.0_gene_models.gff3.gz. Accessed 30 Jan 2019.

Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM. Chromosome identification and nomenclature of Sorghum bicolor. Genetics. 2005;169:1169–1173. doi: 10.1534/genetics.104.035980. PubMed DOI PMC

Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A. 2006;103:5224–5229. doi: 10.1073/pnas.0510791103. PubMed DOI PMC

Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC

Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18:6097–6100. doi: 10.1093/nar/18.20.6097. PubMed DOI PMC

Martinek T, Lexa M. Identification of palindrome-forming sequences (software) 2010.

Tompitak M. 2017. https://github.com/SchiesselLab/MarkovModel/blob/master/Scripts/nucleosome_prob_landscape.py. Accessed 21 Mar 2019.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace