Genome invasion by a hypomethylated satellite repeat in Australian crucifer Ballantinia antipoda
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31074166
DOI
10.1111/tpj.14380
Knihovny.cz E-zdroje
- Klíčová slova
- Brassicaceae, DNA methylation, comparative genomics, heterochromatin, satellite repeats,
- MeSH
- Arabidopsis genetika MeSH
- cévnaté rostliny chemie genetika metabolismus MeSH
- epigeneze genetická MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- heterochromatin genetika metabolismus MeSH
- histony chemie metabolismus MeSH
- metylace DNA genetika MeSH
- satelitní DNA chemie genetika metabolismus MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- histony MeSH
- satelitní DNA MeSH
Repetitive sequences are ubiquitous components of all eukaryotic genomes. They contribute to genome evolution and the regulation of gene transcription. However, the uncontrolled activity of repetitive sequences can negatively affect genome functions and stability. Therefore, repetitive DNAs are embedded in a highly repressive heterochromatic environment in plant cell nuclei. Here, we analyzed the sequence, composition and the epigenetic makeup of peculiar non-pericentromeric heterochromatic segments in the genome of the Australian crucifer Ballantinia antipoda. By the combination of high throughput sequencing, graph-based clustering and cytogenetics, we found that the heterochromatic segments consist of a mixture of unique sequences and an A-T-rich 174 bp satellite repeat (BaSAT1). BaSAT1 occupies about 10% of the B. antipoda nuclear genome in >250 000 copies. Unlike many other highly repetitive sequences, BaSAT1 repeats are hypomethylated; this contrasts with the normal patterns of DNA methylation in the B. antipoda genome. Detailed analysis of several copies revealed that these non-methylated BaSAT1 repeats were also devoid of heterochromatic histone H3K9me2 methylation. However, the factors decisive for the methylation status of BaSAT1 repeats remain currently unknown. In summary, we show that even highly repetitive sequences can exist as hypomethylated in the plant nuclear genome.
Biology Centre The Czech Academy of Sciences České Budejovice 37005 Czech Republic
Max Planck Institute for Plant Breeding Research Cologne 50829 Germany
The Czech Academy of Sciences Institute of Experimental Botany Olomouc 77900 Czech Republic
Zobrazit více v PubMed
Ali, H.B.M., Lysak, M.A. and Schubert, I. (2005) Chromosomal localization of rDNA in the Brassicaceae. Genome, 48, 341-346.
Altschul, S., Gish, W., Miller, W., Myers, E. and Lipman, D. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
Ambrožová, K., Mandáková, T., Bureš, P., Neumann, P., Leitch, I.J., Koblížková, A., Macas, J. and Lysak, M.A. (2011) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann. Bot. 107, 255-268.
Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W. and Noble, W.S. (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-W208.
Barow, M. and Meister, A. (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry, 47, 1-7.
Baubec, T., Finke, A., Mittelsten Scheid, O. and Pecinka, A. (2014) Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 15, 446-452.
Belele, C.L., Sidorenko, L., Stam, M., Bader, R., Arteaga-Vazquez, M.A. and Chandler, V.L. (2013) Specific tandem repeats are sufficient for paramutation-induced trans-generational silencing. PLoS Genet. 9, e1003773.
Bewick, A.J., Ji, L., Niederhuth, C.E. et al. (2016) On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl Acad. Sci. USA, 113, 9111-9116.
Cavrak, V.V., Lettner, N., Jamge, S., Kosarewicz, A., Bayer, L.M. and Mittelsten Scheid, O. (2014) How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genet. 10, e1004115.
Cowan, C.R., Carlton, P.M. and Cande, W.Z. (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol. 125, 532-538.
Dawe, R.K., Lowry, E.G., Gent, J.I. et al. (2018) A Kinesin-14 motor activates neocentromeres to promote meiotic drive in maize. Cell, 173, 839-850.e18.
Devos, K.M., Brown, J.K.M. and Bennetzen, J.L. (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075-1079.
Du, J., Zhong, X., Bernatavichute, Y.V. et al. (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell, 151, 167-180.
Fransz, P., de Jong, J.H., Lysak, M., Castiglione, M.R. and Schubert, I. (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl Acad. Sci. USA, 99, 14584-14589.
Fransz, P., Soppe, W. and Schubert, I. (2003) Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res. 11, 227-240.
Fransz, P., ten Hoopen, R. and Tessadori, F. (2006) Composition and formation of heterochromatin in Arabidopsis thaliana. Chromosome Res. 14, 71-82.
Fransz, P., Linc, G., Lee, C.R. et al. (2016) Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. Plant J. 88, 159-178.
Fu, F.-F., Dawe, R.K. and Gent, J.I. (2018) Loss of RNA-directed DNA methylation in maize chromomethylase and DDM1-type nucleosome remodeler mutants. Plant Cell, 30, 1617-1627.
Garrido-Ramos, M.A. (2015) Satellite DNA in plants: more than just rubbish. Cytogenet Genome Res. 146, 153-170.
Gendrel, A.-V., Lippman, Z., Martienssen, R. and Colot, V. (2005) Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods, 2, 213-218.
Gent, J.I., Madzima, T.F., Bader, R., Kent, M.R., Zhang, X., Stam, M., McGinnis, K.M. and Dawe, R.K. (2014) Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. Plant Cell, 26: 4903, LP-4917.
Grant, C.E., Bailey, T.L. and Noble, W.S. (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics, 27, 1017-1018.
Gregory, T.R. (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. 95, 133-146.
Hawkins, J.S., Proulx, S.R., Rapp, R.A. and Wendel, J.F. (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc. Natl Acad. Sci. USA, 106, 17811-17816.
Hay, A.S., Pieper, B., Cooke, E. et al. (2014) Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J. 78, 1-15.
Heenan, P.B., Goeke, D.F., Houliston, G.J. and Lysak, M.A. (2012) Phylogenetic analyses of ITS and rbcL DNA sequences for sixteen genera of Australian and New Zealand Brassicaceae result in the expansion of the tribe Microlepidieae. Taxon, 61, 970-979.
Heslop-Harrison, J.S. and Schwarzacher, T. (2011) Organisation of the plant genome in chromosomes. Plant J. 66, 18-33.
Hetzl, J., Foerster, A.M., Raidl, G. and Mittelsten Scheid, O. (2007) CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J. 51.
Hu, T.T., Pattyn, P., Bakker, E.G. et al. (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476-481.
Ibarra-Laclette, E., Lyons, E., Hernández-Guzmán, G. et al. (2013) Architecture and evolution of a minute plant genome. Nature, 498, 94-98.
Ito, H., Gaubert, H., Bucher, E., Mirouze, M., Vaillant, I. and Paszkowski, J. (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472, 115-119.
Kamm, A., Galasso, I., Schmidt, T. and Heslop-Harrison, J.S. (1995) Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol. Biol. 27, 853-862.
Kocsis, E., Trus, B.L., Steer, C.J., Bisher, M.E. and Steven, A.C. (1991) Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J. Struct. Biol. 107, 6-14.
Krueger, F. and Andrews, S.R. (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27, 1571-1572.
Lisch, D. (2013) How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49-61.
Luo, R., Liu, B., Xie, Y. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 1, 18.
Lysak, M.A., Koch, M.A., Pecinka, A. and Schubert, I. (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res. 15, 516-525.
Lysak, M.A., Cheung, K., Kitschke, M. and Bureš, P. (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol. 145, 402-410.
Lysak, M.A., Mandáková, T. and Schranz, M.E. (2016) Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 30, 108-115.
Macas, J., Navrátilová, A. and Mészáros, T. (2003) Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes. Chromosoma, 112, 152-158.
Macas, J., Koblížková, A., Navrátilová, A. and Neumann, P. (2009) Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene, 448, 198-206.
Majerová, E., Mandáková, T., Vu, G.T.H., Fajkus, J., Lysak, M.A. and Fojtová, M. (2014) Chromatin features of plant telomeric sequences at terminal vs. internal positions. Front. Plant Sci. 5, 593.
Mandáková, T. and Lysak, M.A. (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell, 20, 2559-2570.
Mandáková, T. and Lysak, M.A. (2016). Chromosome preparation for cytogenetic analyses in Arabidopsis. In Curr Protocols Plant Biol. John Wiley & Sons, Inc., pp. 43-51.
Mandáková, T., Joly, S., Krzywinski, M., Mummenhoff, K. and Lysak, M.A. (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell, 22, 2277-2290.
Mandáková, T., Pouch, M., Harmanová, K., Zhan, S.H., Mayrose, I. and Lysak, M.A. (2017) Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol. Ecol. 26, 6445-6462.
Mari-Ordonez, A., Marchais, A., Etcheverry, M., Martin, A., Colot, V. and Voinnet, O. (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 45, 1029-1039.
Mathieu, O., Jasencakova, Z., Vaillant, I., Gendrel, A.-V., Colot, V., Schubert, I. and Tourmente, S. (2003) Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell, 15, 2929-2939.
Matzke, M.A. and Mosher, R.A. (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394-408.
Mehrotra, S. and Goyal, V. (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics, 12, 164-171.
Melters, D.P., Bradnam, K.R., Young, H.A. et al. (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 14, R10-R10.
Nouzová, M., Neumann, P., Navrátilová, A., Galbraith, D.W. and Macas, J. (2001) Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol. Biol. 45, 229-244.
Novák, P., Neumann, P. and Macas, J. (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics, 11, 378.
Novák, P., Neumann, P., Pech, J., Steinhaisl, J. and Macas, J. (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics, 29, 792-793.
Novák, P., Robledillo, L.A., Koblížková, A., Vrbová, I., Neumann, P. and Macas, J. (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 45, e111.
Ohmido, N., Kijima, K., Akiyama, Y., de Jong, J.H. and Fukui, K. (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol. Gen. Genet. 263, 388-394.
Piegu, B., Guyot, R., Picault, N. et al. (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16, 1262-1269.
Pietzenuk, B., Markus, C., Gaubert, H., Bagwan, N., Merotto, A., Bucher, E. and Pecinka, A. (2016) Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol. 17, 209.
Plohl, M., Luchetti, A., Meštrović, N. and Mantovani, B. (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene, 409, 72-82.
Schmidt, M., Hense, S., Minoche, A.E., Dohm, J.C., Himmelbauer, H., Schmidt, T. and Zakrzewski, F. (2014) Cytosine methylation of an ancient satellite family in the wild beet Beta procumbens. Cytogenet Genome Res. 143, 157-167.
Schnable, P.S., Ware, D. and Fulton, R.S. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science, 326, 1112-1115.
Schranz, M.E., Lysak, M.A. and Mitchell-Olds, T. (2006) The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 11, 535-542.
Seymour, D.K., Koenig, D., Hagmann, J., Becker, C. and Weigel, D. (2014) Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet. 10, e1004785.
Šmarda, P., Bureš, P., Šmerda, J. and Horová, L. (2012) Measurements of genomic GC content in plant genomes with flow cytometry: a test for reliability. New Phytol. 193, 513-521.
Šmarda, P., Bureš, P., Horová, L., Leitch, I.J., Mucina, L., Pacini, E., Tichý, L., Grulich, V. and Rotreklová, O. (2014) Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl Acad. Sci. USA, 111, E4096-E4102.
Stroud, H., Greenberg, M.V.C., Feng, S., Bernatavichute, Y.V. and Jacobsen, S.E. (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell, 152, 352-364.
Tiang, C.-L., He, Y. and Pawlowski, W.P. (2012) Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol. 158, 26-34.
Vu, G.T.H., Schmutzer, T., Bull, F. (2015) Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 8. https://doi.org/10.3835/plantgenome2015.04.0021.
Willing, E.M., Rawat, V., Mandáková, T. et al. (2015) Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat. Plants, 1, 1-5.
Willing, E.-M., Piofczyk, T., Albert, A., Winkler, B.J., Schneeberger, K. and Pecinka, A. (2016) UVR2 ensures trans-generational genome stability under simulated natural UV-B in Arabidopsis thaliana. Nat. Commun. 7, 13522.
Yadav, R.K., Girke, T., Pasala, S., Xie, M. and Reddy, G.V. (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc. Natl Acad. Sci. USA, 106, 4941-4946.
Yan, H., Kikuchi, S., Neumann, P., Zhang, W., Wu, Y., Chen, F. and Jiang, J. (2010) Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant J. 63, 353-365.
Zakrzewski, F., Weisshaar, B., Fuchs, J., Bannack, E., Minoche, A.E., Dohm, J.C., Himmelbauer, H. and Schmidt, T. (2011) Epigenetic profiling of heterochromatic satellite DNA. Chromosoma, 120, 409-422.
Zakrzewski, F., Schubert, V., Viehoever, P., Minoche, A.E., Dohm, J.C., Himmelbauer, H., Weisshaar, B. and Schmidt, T. (2014) The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. Plant J. 78, 937-950.
Zhang, W., Lee, H.-R., Koo, D.-H. and Jiang, J. (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell, 20, 25-34.
Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution