Influence of Steel Structure on Machinability by Abrasive Water Jet

. 2020 Oct 05 ; 13 (19) : . [epub] 20201005

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33027923

Grantová podpora
SP2020/39; SP2020/45; SP2020/58 Ministerstvo Školství, Mládeže a Tělovýchovy

Although the abrasive waterjet (AWJ) has been widely used for steel cutting for decades and there are hundreds of research papers or even books dealing with this technology, relatively little is known about the relation between the steel microstructure and the AWJ cutting efficiency. The steel microstructure can be significantly affected by heat treatment. Three different steel grades, carbon steel C45, micro-alloyed steel 37MnSi5 and low-alloy steel 30CrV9, were subjected to four different types of heat treatment: normalization annealing, soft annealing, quenching and quenching followed by tempering. Then, they were cut by an abrasive water jet, while identical cutting parameters were applied. The relations between the mechanical characteristics of heat-treated steels and the surface roughness parameters Ra, Rz and RSm were studied. A comparison of changes in the surface roughness parameters and Young modulus variation led to the conclusion that the modulus was not significantly responsible for the surface roughness. The changes of RSm did not prove any correlation to either the mechanical characteristics or the visible microstructure dimensions. The homogeneity of the steel microstructure appeared to be the most important factor for the cutting quality; the higher the difference in the hardness of the structural components in the inhomogeneous microstructure was, the higher were the roughness values. A more complex measurement and critical evaluation of the declination angle measurement compared to the surface roughness measurement are planned in future research.

Zobrazit více v PubMed

Hashish M. AWJ Milling of Gamma Titanium Aluminide. J. Manuf. Sci. Eng.-Trans. ASME. 2010;132:041005. doi: 10.1115/1.4001663. DOI

Yuvaraj N., Pavithra E., Shamli C.S. Investigation of Surface Morphology and Topography Features on Abrasive Water Jet Milled Surface Pattern of SS 304. J. Test. Eval. 2020;48:2981–2997. doi: 10.1520/JTE20180856. DOI

Thakur R.K., Singh K.K. Abrasive waterjet machining of fiber-reinforced composites: A state-of-the-art review. J. Braz. Soc. Mech. Sci. Eng. 2020;42:381. doi: 10.1007/s40430-020-02463-7. DOI

Liu S.Y., Zhou F.Y., Li H.S., Chen Y.Q., Wang F.C., Guo C.W. Experimental Investigation of Hard Rock Breaking Using a Conical Pick Assisted by Abrasive Water Jet. Rock Mech. Rock Eng. 2020;53:4221–4230. doi: 10.1007/s00603-020-02168-2. DOI

Pelit H., Yaman O. Influence of Processing Parameters on the Surface Roughness of Solid Wood Cut by Abrasive Water Jet. BioResources. 2020;15:6135–6148. doi: 10.15376/biores.15.3.6135-6148. DOI

Pahuja R., Ramulu M., Hashish M. Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks. Compos. Part B-Eng. 2019;175:UNSP 107134. doi: 10.1016/j.compositesb.2019.107134. DOI

Ipar C.E.D.E.L., Neis P.D., Ferreira N.F., Lasch G., Zibetti T.F. Analysis of the initial damage region in agate plates cut by abrasive waterjet (AWJ) process. Int. J. Adv. Manuf. Technol. 2020;109:2629–2638. doi: 10.1007/s00170-020-05831-8. DOI

Modica F., Basile V., Viganò F., Arleo F., Annoni M., Fassi I. Micro-Abrasive Water Jet and Micro-WEDM Process Chain Assessment for Fabricating Microcomponents. J. Micro Nano-Manuf. 2019;7:010903. doi: 10.1115/1.4042966. DOI

Hashish M. A Modeling Study of Metal Cutting with Abrasive Waterjets. J. Eng. Mater. Technol.-Trans. ASME. 1984;106:88–100. doi: 10.1115/1.3225682. DOI

Hashish M. A Model for Abrasive-Waterjet (AWJ) Machining. J. Eng. Mater. Technol.-Trans. ASME. 1989;111:154–162. doi: 10.1115/1.3226448. DOI

Zeng J., Kim T.J. An Erosion Model of Polycrystalline Ceramics in Abrasive Waterjet Cutting. Wear. 1996;193:207–217. doi: 10.1016/0043-1648(95)06721-3. DOI

Che C.L., Huang C.Z., Wang J., Zhu H.T., Li Q.L. Theoretical Model of Surface Roughness for Polishing Super Hard Materials with Abrasive Waterjet. Key Eng. Mater. 2008;375–376:465–469. doi: 10.4028/www.scientific.net/KEM.375-376.465. DOI

Vikram G., Babu N.R. Modelling and Analysis of Abrasive Water Jet Cut Surface Topography. Int. J. Mach. Tools Manuf. 2002;42:1345–1354. doi: 10.1016/S0890-6955(02)00064-0. DOI

Deam R.T., Lemma E.M., Ahmed D.H. Modelling of the Abrasive Water Jet Cutting Process. Wear. 2004;257:877–891. doi: 10.1016/j.wear.2004.04.002. DOI

Bitter J.G.A. A Study of Erosion Phenomena Part I. Wear. 1963;7:5–21. doi: 10.1016/0043-1648(63)90003-6. DOI

Bitter J.G.A. A Study of Erosion Phenomena Part II. Wear. 1963;7:169–190. doi: 10.1016/0043-1648(63)90073-5. DOI

Liu X.C., Liang Z.W., Wen G.L., Yuan X.F. Waterjet machining and research developments: A review. Int. J. Adv. Manuf. Technol. 2019;102:1257–1335. doi: 10.1007/s00170-018-3094-3. DOI

Arola D., Ramulu M. Material Removal in Abrasive Waterjet Machining of Metals—Surface Integrity and Texture. Wear. 1997;210:50–58. doi: 10.1016/S0043-1648(97)00087-2. DOI

Chen F.L., Siores E., Patel K. Improving the Cut Surface Qualities Using Different Controlled Nozzle Oscillation Techniques. Int. J. Mach. Tools Manuf. 2002;42:717–722. doi: 10.1016/S0890-6955(01)00161-4. DOI

Hascalik A., Caydas U., Gurun H. Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy. Mater. Des. 2007;28:465–469. doi: 10.1016/j.matdes.2006.04.020. DOI

Hlaváč L.M., Strnadel B., Kaličinský J., Gembalová L. The model of product distortion in AWJ cutting. Int. J. Adv. Manuf. Technol. 2012;62:1257–1335. doi: 10.1007/s00170-011-3788-2. DOI

Monno M., Pellegrini G., Ravasio C. Effect of workpiece heat treatment on surface quality of AWJ kerf. Int. J. Mater. Prod. Technol. 2015;51:345–358. doi: 10.1504/IJMPT.2015.072558. DOI

Kong M.C., Srinivasu D., Axinte D., Voice W., McGourlay J., Hon B. On geometrical accuracy and integrity of surfaces in multi-mode abrasive waterjet machining of NiTi shape memory alloys. CIRP Ann.-Manuf. Technol. 2013;62:555–558. doi: 10.1016/j.cirp.2013.03.021. DOI

Xu D.D., Liao Z.R., Axinte D., Hardy M. A novel method to continuously map the surface integrity and cutting mechanism transition in various cutting conditions. Int. J. Mach. Tools Manuf. 2020;151:103529. doi: 10.1016/j.ijmachtools.2020.103529. DOI

Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI

Strnadel B., Hlaváč L.M., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI

Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI

JKZ Bučovice. [(accessed on 4 September 2020)]; Available online: https://www.jkz.cz/en/products/structural-steel/csn-12-050-11191-c45/

Ferona Online Materiálové Normy (in Czech) [(accessed on 4 September 2020)]; Available online: https://online.ferona.cz/materialove-normy/

ARET STEEL Hutní Materiál. [(accessed on 7 September 2020)]; Available online: http://www.aretsteel.com/en/steel-grades.

GDOES Theory, SPECTRUMA Analytik GmbH. [(accessed on 5 September 2020)]; Available online: https://www.spectruma.de/en/gdoes-theory.html.

Metallic Materials—Tensile Testing—Part 1: Test Method at Room Temperature. International Organization for Standardization; Geneva, Switzerland: 2019. ČSN EN ISO 6892-1 (420310)

Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 1997. ČSN EN ISO 4287.

Mitutoyo Quick Guide to Surface Roughness Measurement Reference Guide for Laboratory and Workshop. [(accessed on 9 September 2020)]; Available online: https://www.mitutoyo.com/wp-content/uploads/2012/11/1984_Surf_Roughness_PG.pdf.

Surface Roughness Measurement Practical Tips for Laboratory and Workshop. p. 5. [(accessed on 9 September 2020)]; Available online: https://www.mitutoyo.com/wp-content/uploads/2015/04/Surface_Roughness_Measurement.pdf.

Björkeborn K., Klement U., Oskarson H.B. Study of microstructural influences on machinability of case hardening steel. Int. J. Adv. Manuf. Technol. 2010;49:441–446. doi: 10.1007/s00170-009-2415-y. DOI

Blaoui M.M., Zemri M., Brahami M. Effect of Heat Treatment Parameters on Mechanical Properties of Medium Carbon Steel. Mech. Mech. Eng. 2018;22:909–918. doi: 10.2478/mme-2018-0071. DOI

Korda A., Miyashita Y., Mutoh Y., Sadasue T. Fatigue crack growth behavior in ferritic–pearlitic steels with networked and distributed pearlite structures. Int. J. Fatigue. 2007;29:1140–1148. doi: 10.1016/j.ijfatigue.2006.09.008. DOI

Bowen L., Qin T., Wei X., Chengchang J., Qiuchi W., Mingying C., Zhe L. Effect of Tempering Conditions on Secondary Hardening of Carbides and Retained Austenite in Spray-Formed M42 High-Speed Steel. Materials. 2019;12:3714. doi: 10.3390/ma12223714. PubMed DOI PMC

Ali Y.M., Wang J. Impact Abrasive Machining. In: Jackson M.J., Davim J.P., editors. Machining with Abrasives. 2nd ed. Springer Science+Business Media; Cham, Switzerland: 2011. pp. 385–419. DOI

Holmberg J., Steuwer A., Stormvinter A., Kristoffersen H., Haakanen M., Berglund J. Residual stress state in an induction hardened steel bar determined by synchrotron—And neutron diffraction compared to results from lab-XRD. Mater. Sci. Eng. A. 2016;667:199–207. doi: 10.1016/j.msea.2016.04.075. DOI

Zhou T.P., Wang C.Y., Wang C., Cao W.Q., Chen Z.J. Strong Interactions between Austenite and the Matrix of Medium-Mn Steel during Intercritical Annealing. Materials. 2020;13:3366. doi: 10.3390/ma13153366. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...