• This record comes from PubMed

Structure and Properties of Cast Ti-Al-Si Alloys

. 2021 Feb 08 ; 14 (4) : . [epub] 20210208

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
A1_FCHT_2020_003 Ministerstvo Školství, Mládeže a Tělovýchovy
A2_FCHT_2020_046 Ministerstvo Školství, Mládeže a Tělovýchovy
SP2021/62 Ministerstvo Školství, Mládeže a Tělovýchovy

Intermetallic compounds based on Ti-Al- (Si) are attractive materials with good thermal stability and low density. However, the production of these materials is quite complicated. Partially modified conventional methods of melting metallurgy are most often used due to availability, possible high productivity, and relatively low production costs. Therefore, some technologies for the production of intermetallics based on Ti-Al are currently available, but with certain disadvantages, which are caused by poor casting properties or extreme reactivity of the melt with crucibles. Some shortcomings can be eliminated by modifying the melting technology, which contributes to increasing the cost of the process. The work deals with the preparation of Ti-Al-Si intermetallic compounds with different contents of aluminum and silicon, which were produced by centrifugal casting in an induction vacuum furnace Linn Supercast-Titan. This process could contribute to the commercial use of these alloys in the future. For this research, the TiAl15Si15(in wt.%) alloy was selected, which represents a balanced ratio of aluminides and silicides in its structure, and the TiAl35Si5 alloy, which due to the lower silicon content allows better melting conditions, especially with regard to the melting temperature. This alloy was also investigated after HIP ("Hot Isostatic Pressing") treatment.

See more in PubMed

Bewlay B.P., Nag S., Suzuki A., Weimer M.J. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016;33:549–559. doi: 10.1080/09603409.2016.1183068. DOI

Fang H., Chen R., Yang Y., Su Y., Ding H., Guo J., Fu H. Role of graphite on microstructural evolution and mechanical properties of ternary TiAl alloy prepared by arc melting method. Mater. Design. 2018;156:300–310. doi: 10.1016/j.matdes.2018.06.048. DOI

Bauer V., Christ H.J.I. Thermomechanical fatigue behaviour of a third generation#³-TiAl intermetallic alloy. Intermetallics. 2009;17:370–377.

Lapin J. Proceedings of the Metal. Vol. 19. Tanger; Ostrava, Czech Republic: 2009. TiAl-based alloys: Present status and future perspectives; p. 2019. No. 21.5.

Noda T. Application of cast gamma TiAl for automobiles. Intermetallics. 1998;6:709–713. doi: 10.1016/S0966-9795(98)00060-0. DOI

Fu P.X., Kang X.H., Ma Y.C., Liu K., Li D.Z., Li Y.Y. Centrifugal casting of TiAl exhaust valves. Intermetallics. 2008;16:130–138. doi: 10.1016/j.intermet.2007.08.007. DOI

Ye X.-C., Xiao K.-Q., Cao R.-X., Wu H., Zhao G.-w., Li B. Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting. Vacuum. 2019;163:186–193. doi: 10.1016/j.vacuum.2019.02.028. DOI

Deevi S.C., Sikk V.K. Exo-MeltTM process for melting and casting intermetallics. Intermetallics. 1997;5:17–27. doi: 10.1016/S0966-9795(96)00067-2. DOI

Čegan T., Szurman I. Thermal stability and precipitation strengthening of fully lamellar Ti-45Al-5Nb-0.2B-0.75C alloy. Kov. Mater. 2017;55:421–430. doi: 10.4149/km_2017_6_421. DOI

Clemens H., Mayer S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Adv. Eng. Mater. 2013;15:191–215. doi: 10.1002/adem.201200231. DOI

Lapin J., Pelachová T. Microstructural stability of a cast Ti–45.2Al–2W–0.6Si–0.7B alloy at temperatures 973–1073K. Intermetallics. 2006;14:1175–1180. doi: 10.1016/j.intermet.2005.12.013. DOI

Fashu S., Lototskyy M., Davids M.W., Pickering L., Linkov V., Tai S., Renheng T., Fangming X., Fursikov P.V., Tarasov B.P. A review on crucibles for induction melting of titanium alloys. Mater. Design. 2020;186:108295. doi: 10.1016/j.matdes.2019.108295. DOI

Barbosa J., Ribeiro C.S., Monteiro A.C. Influence of superheating on casting of γ-TiAl. Intermetallics. 2007;15:945–955. doi: 10.1016/j.intermet.2006.11.004. DOI

Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14:1114–1122. doi: 10.1016/j.intermet.2005.10.019. DOI

Kostov A., Friedrich B. Selection of crucible oxides in molten titanium and titanium aluminum alloys by thermo-chemistry calculations. J. Min. Metall. Sect. BMetall. 2005;41:113–125. doi: 10.2298/JMMB0501113K. DOI

Gomes F., Puga H., Barbosa J., Ribeiro C.S. Effect of melting pressure and superheating on chemical composition and contamination of yttria-coated ceramic crucible induction melted titanium alloys. J. Mater. Sci. 2011;46:4922–4936. doi: 10.1007/s10853-011-5405-z. DOI

Schafföner S., Aneziris C.G., Berek H., Hubálková J., Rotmann B., Friedrich B. Corrosion behavior of calcium zirconate refractories in contact with titanium aluminide melts. J. Eur. Ceram. Soc. 2015;35:1097–1106. doi: 10.1016/j.jeurceramsoc.2014.09.032. DOI

Čegan T., Szurman I., Kursa M., Holesinsky J., Vontorova J. Preparation of TiAl-based alloys by induction melting in graphite crucibles. Kov. Mater. 2015;53:69–78. doi: 10.4149/km_2015_2_69. DOI

Zhang Z., Frenzel J., Neuking K., Eggeler G. On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys. Acta Mater. 2005;53:3971–3985. doi: 10.1016/j.actamat.2005.05.004. DOI

Kulakov B., Dubrovin V., Karpinskiy A. Materials Science Forum. Trans Tech Publications Ltd.; Bäch, Switzerland: 2016. Computing Simulation of Casting Using Titanium Aluminide Intermetallic Alloys; pp. 213–216.

Vacuum Casting a Turbocharger in Titanium Aluminide. [(accessed on 13 January 2021)]; Available online: https://www.topcast.it/en/news/vacuum-casting-a-turbocharger-in-titanium-aluminide_7.html.

Aguilar J., Hecht U., Schievenbusch A. Qualification of an Investment Casting Process for Production of Titanium Aluminide Components for Aerospace and Automotive Applications. Mater. Sci. Forum. 2010;638–642:1275–1280. doi: 10.4028/www.scientific.net/MSF.638-642.1275. DOI

Duarte A., Viana F., Santos H.M. As-cast titanium aluminides microstructure modification. Mater. Res. 1999;2:191–195. doi: 10.1590/S1516-14391999000300013. DOI

Saqib M., Apgar L.S., Eylon D., Weiss I. The effects of HIP processing on microstructure and phase relations in α2-base titanium aluminides. Mater. Sci. Eng. A. 1992;153:726–735. doi: 10.1016/0921-5093(92)90278-9. DOI

Novák P., Průša F., Šerák J., Vojtěch D., Michalcová A. Proceedings of the Metal. Tanger; Ostrava, Czech Republic: 2009. Oxidation resistance and thermal stability of Ti-Al-Si alloys produced by reactive sintering.

Knaislová A., Novák P., Cabibbo M., Průša F., Paoletti C., Jaworska L., Vojtěch D. Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. J. Alloys Compd. 2018;752:317–326. doi: 10.1016/j.jallcom.2018.04.187. DOI

Novák P., Kříž J., Průša F., Kubásek J., Marek I., Michalcová A., Voděrová M., Vojtěch D. Structure and properties of Ti–Al–Si-X alloys produced by SHS method. Intermetallics. 2013;39:11–19. doi: 10.1016/j.intermet.2013.03.009. DOI

Knaislová A., Novák P., Průša F., Cabibbo M., Jaworska L., Vojtěch D. High-temperature oxidation of Ti–Al–Si alloys prepared by powder metallurgy. J. Alloys Compd. 2019;810:151895. doi: 10.1016/j.jallcom.2019.151895. DOI

Novák P., Vojtěch D., Šerák J., Kubásek J., Průša F., Knotek V., Michalcová A., Novák M. Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering. Chem. Listy. 2009;103:1022–1026.

Knaislová A., Linhart J., Novák P., Průša F., Kopeček J., Laufek F., Vojtěch D. Preparation of TiAl15Si15 intermetallic alloy by mechanical alloying and the spark plasma sintering method. Powder Metall. 2019;62:56–60. doi: 10.1080/00325899.2019.1569812. DOI

Knaislová A., Novák P., Kopeček J., Průša F. Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods. Materials. 2019;12:3084. doi: 10.3390/ma12193084. PubMed DOI PMC

Hlaváčová I.M., Sadílek M., Váňová P., Szumilo Š., Tyč M. Influence of Steel Structure on Machinability by Abrasive Water Jet. Materials. 2020;13:4424. doi: 10.3390/ma13194424. PubMed DOI PMC

Vojtech D., Kubatík T., Čížová H. Application of Silicon for a Protection of Titanium against High-Temperature Oxidation. Mater. Sci. Forum. 2005;482:243–246. doi: 10.4028/www.scientific.net/MSF.482.243. DOI

Novák P., Kříž J., Michalcová A., Vojtech D. Microstructure Evolution of Fe-Al-Si and Ti-Al-Si Alloys during High-Temperature Oxidation. Mater. Sci. Forum. 2014;782:353–358. doi: 10.4028/www.scientific.net/MSF.782.353. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...