Structure and Properties of Cast Ti-Al-Si Alloys
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
A1_FCHT_2020_003
Ministerstvo Školství, Mládeže a Tělovýchovy
A2_FCHT_2020_046
Ministerstvo Školství, Mládeže a Tělovýchovy
SP2021/62
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33567729
PubMed Central
PMC7914839
DOI
10.3390/ma14040813
PII: ma14040813
Knihovny.cz E-resources
- Keywords
- Ti-Al based alloys, casting, intermetallics,
- Publication type
- Journal Article MeSH
Intermetallic compounds based on Ti-Al- (Si) are attractive materials with good thermal stability and low density. However, the production of these materials is quite complicated. Partially modified conventional methods of melting metallurgy are most often used due to availability, possible high productivity, and relatively low production costs. Therefore, some technologies for the production of intermetallics based on Ti-Al are currently available, but with certain disadvantages, which are caused by poor casting properties or extreme reactivity of the melt with crucibles. Some shortcomings can be eliminated by modifying the melting technology, which contributes to increasing the cost of the process. The work deals with the preparation of Ti-Al-Si intermetallic compounds with different contents of aluminum and silicon, which were produced by centrifugal casting in an induction vacuum furnace Linn Supercast-Titan. This process could contribute to the commercial use of these alloys in the future. For this research, the TiAl15Si15(in wt.%) alloy was selected, which represents a balanced ratio of aluminides and silicides in its structure, and the TiAl35Si5 alloy, which due to the lower silicon content allows better melting conditions, especially with regard to the melting temperature. This alloy was also investigated after HIP ("Hot Isostatic Pressing") treatment.
See more in PubMed
Bewlay B.P., Nag S., Suzuki A., Weimer M.J. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016;33:549–559. doi: 10.1080/09603409.2016.1183068. DOI
Fang H., Chen R., Yang Y., Su Y., Ding H., Guo J., Fu H. Role of graphite on microstructural evolution and mechanical properties of ternary TiAl alloy prepared by arc melting method. Mater. Design. 2018;156:300–310. doi: 10.1016/j.matdes.2018.06.048. DOI
Bauer V., Christ H.J.I. Thermomechanical fatigue behaviour of a third generation#³-TiAl intermetallic alloy. Intermetallics. 2009;17:370–377.
Lapin J. Proceedings of the Metal. Vol. 19. Tanger; Ostrava, Czech Republic: 2009. TiAl-based alloys: Present status and future perspectives; p. 2019. No. 21.5.
Noda T. Application of cast gamma TiAl for automobiles. Intermetallics. 1998;6:709–713. doi: 10.1016/S0966-9795(98)00060-0. DOI
Fu P.X., Kang X.H., Ma Y.C., Liu K., Li D.Z., Li Y.Y. Centrifugal casting of TiAl exhaust valves. Intermetallics. 2008;16:130–138. doi: 10.1016/j.intermet.2007.08.007. DOI
Ye X.-C., Xiao K.-Q., Cao R.-X., Wu H., Zhao G.-w., Li B. Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting. Vacuum. 2019;163:186–193. doi: 10.1016/j.vacuum.2019.02.028. DOI
Deevi S.C., Sikk V.K. Exo-MeltTM process for melting and casting intermetallics. Intermetallics. 1997;5:17–27. doi: 10.1016/S0966-9795(96)00067-2. DOI
Čegan T., Szurman I. Thermal stability and precipitation strengthening of fully lamellar Ti-45Al-5Nb-0.2B-0.75C alloy. Kov. Mater. 2017;55:421–430. doi: 10.4149/km_2017_6_421. DOI
Clemens H., Mayer S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Adv. Eng. Mater. 2013;15:191–215. doi: 10.1002/adem.201200231. DOI
Lapin J., Pelachová T. Microstructural stability of a cast Ti–45.2Al–2W–0.6Si–0.7B alloy at temperatures 973–1073K. Intermetallics. 2006;14:1175–1180. doi: 10.1016/j.intermet.2005.12.013. DOI
Fashu S., Lototskyy M., Davids M.W., Pickering L., Linkov V., Tai S., Renheng T., Fangming X., Fursikov P.V., Tarasov B.P. A review on crucibles for induction melting of titanium alloys. Mater. Design. 2020;186:108295. doi: 10.1016/j.matdes.2019.108295. DOI
Barbosa J., Ribeiro C.S., Monteiro A.C. Influence of superheating on casting of γ-TiAl. Intermetallics. 2007;15:945–955. doi: 10.1016/j.intermet.2006.11.004. DOI
Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14:1114–1122. doi: 10.1016/j.intermet.2005.10.019. DOI
Kostov A., Friedrich B. Selection of crucible oxides in molten titanium and titanium aluminum alloys by thermo-chemistry calculations. J. Min. Metall. Sect. BMetall. 2005;41:113–125. doi: 10.2298/JMMB0501113K. DOI
Gomes F., Puga H., Barbosa J., Ribeiro C.S. Effect of melting pressure and superheating on chemical composition and contamination of yttria-coated ceramic crucible induction melted titanium alloys. J. Mater. Sci. 2011;46:4922–4936. doi: 10.1007/s10853-011-5405-z. DOI
Schafföner S., Aneziris C.G., Berek H., Hubálková J., Rotmann B., Friedrich B. Corrosion behavior of calcium zirconate refractories in contact with titanium aluminide melts. J. Eur. Ceram. Soc. 2015;35:1097–1106. doi: 10.1016/j.jeurceramsoc.2014.09.032. DOI
Čegan T., Szurman I., Kursa M., Holesinsky J., Vontorova J. Preparation of TiAl-based alloys by induction melting in graphite crucibles. Kov. Mater. 2015;53:69–78. doi: 10.4149/km_2015_2_69. DOI
Zhang Z., Frenzel J., Neuking K., Eggeler G. On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys. Acta Mater. 2005;53:3971–3985. doi: 10.1016/j.actamat.2005.05.004. DOI
Kulakov B., Dubrovin V., Karpinskiy A. Materials Science Forum. Trans Tech Publications Ltd.; Bäch, Switzerland: 2016. Computing Simulation of Casting Using Titanium Aluminide Intermetallic Alloys; pp. 213–216.
Vacuum Casting a Turbocharger in Titanium Aluminide. [(accessed on 13 January 2021)]; Available online: https://www.topcast.it/en/news/vacuum-casting-a-turbocharger-in-titanium-aluminide_7.html.
Aguilar J., Hecht U., Schievenbusch A. Qualification of an Investment Casting Process for Production of Titanium Aluminide Components for Aerospace and Automotive Applications. Mater. Sci. Forum. 2010;638–642:1275–1280. doi: 10.4028/www.scientific.net/MSF.638-642.1275. DOI
Duarte A., Viana F., Santos H.M. As-cast titanium aluminides microstructure modification. Mater. Res. 1999;2:191–195. doi: 10.1590/S1516-14391999000300013. DOI
Saqib M., Apgar L.S., Eylon D., Weiss I. The effects of HIP processing on microstructure and phase relations in α2-base titanium aluminides. Mater. Sci. Eng. A. 1992;153:726–735. doi: 10.1016/0921-5093(92)90278-9. DOI
Novák P., Průša F., Šerák J., Vojtěch D., Michalcová A. Proceedings of the Metal. Tanger; Ostrava, Czech Republic: 2009. Oxidation resistance and thermal stability of Ti-Al-Si alloys produced by reactive sintering.
Knaislová A., Novák P., Cabibbo M., Průša F., Paoletti C., Jaworska L., Vojtěch D. Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. J. Alloys Compd. 2018;752:317–326. doi: 10.1016/j.jallcom.2018.04.187. DOI
Novák P., Kříž J., Průša F., Kubásek J., Marek I., Michalcová A., Voděrová M., Vojtěch D. Structure and properties of Ti–Al–Si-X alloys produced by SHS method. Intermetallics. 2013;39:11–19. doi: 10.1016/j.intermet.2013.03.009. DOI
Knaislová A., Novák P., Průša F., Cabibbo M., Jaworska L., Vojtěch D. High-temperature oxidation of Ti–Al–Si alloys prepared by powder metallurgy. J. Alloys Compd. 2019;810:151895. doi: 10.1016/j.jallcom.2019.151895. DOI
Novák P., Vojtěch D., Šerák J., Kubásek J., Průša F., Knotek V., Michalcová A., Novák M. Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering. Chem. Listy. 2009;103:1022–1026.
Knaislová A., Linhart J., Novák P., Průša F., Kopeček J., Laufek F., Vojtěch D. Preparation of TiAl15Si15 intermetallic alloy by mechanical alloying and the spark plasma sintering method. Powder Metall. 2019;62:56–60. doi: 10.1080/00325899.2019.1569812. DOI
Knaislová A., Novák P., Kopeček J., Průša F. Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods. Materials. 2019;12:3084. doi: 10.3390/ma12193084. PubMed DOI PMC
Hlaváčová I.M., Sadílek M., Váňová P., Szumilo Š., Tyč M. Influence of Steel Structure on Machinability by Abrasive Water Jet. Materials. 2020;13:4424. doi: 10.3390/ma13194424. PubMed DOI PMC
Vojtech D., Kubatík T., Čížová H. Application of Silicon for a Protection of Titanium against High-Temperature Oxidation. Mater. Sci. Forum. 2005;482:243–246. doi: 10.4028/www.scientific.net/MSF.482.243. DOI
Novák P., Kříž J., Michalcová A., Vojtech D. Microstructure Evolution of Fe-Al-Si and Ti-Al-Si Alloys during High-Temperature Oxidation. Mater. Sci. Forum. 2014;782:353–358. doi: 10.4028/www.scientific.net/MSF.782.353. DOI