• This record comes from PubMed

The possible role of hypoxia in the affected tissue of relapsed clubfoot

. 2022 Mar 15 ; 12 (1) : 4462. [epub] 20220315

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 35292718
PubMed Central PMC8924187
DOI 10.1038/s41598-022-08519-z
PII: 10.1038/s41598-022-08519-z
Knihovny.cz E-resources

Our aim was to study the expression of hypoxia-related proteins as a possible regulatory pathway in the contracted side tissue of relapsed clubfoot. We compared the expression of hypoxia-related proteins in the tissue of the contracted (medial) side of relapsed clubfoot, and in the tissue of the non-contracted (lateral) side of relapsed clubfoot. Tissue samples from ten patients were analyzed by immunohistochemistry and image analysis, Real-time PCR and Mass Spectrometry to evaluate the differences in protein composition and gene expression. We found a significant increase in the levels of smooth muscle actin, transforming growth factor-beta, hypoxia-inducible factor 1 alpha, lysyl oxidase, lysyl oxidase-like 2, tenascin C, matrix metalloproteinase-2, matrix metalloproteinase-9, fibronectin, collagen types III and VI, hemoglobin subunit alpha and hemoglobin subunit beta, and an overexpression of ACTA2, FN1, TGFB1, HIF1A and MMP2 genes in the contracted medial side tissue of clubfoot. In the affected tissue, we have identified an increase in the level of hypoxia-related proteins, together with an overexpression of corresponding genes. Our results suggest that the hypoxia-associated pathway is potentially a factor contributing to the etiology of clubfoot relapses, as it stimulates both angioproliferation and fibroproliferation, which are considered to be key factors in the progression and development of relapses.

See more in PubMed

Pavone V, et al. The etiology of idiopathic congenital talipes equinovarus: a systematic review. J. Orthop. Surg. Res. 2018;13:206. doi: 10.1186/s13018-018-0913-z. PubMed DOI PMC

Ansar A, et al. Systematic review and meta-analysis of global birth prevalence of clubfoot: a study protocol. BMJ Open. 2018;8:e019246. doi: 10.1136/bmjopen-2017-019246. PubMed DOI PMC

Dobbs MB, Gurnett CA. Update on Clubfoot: Etiology and treatment. Clin. Orthop. Relat. Res. 2009;467:1146–1153. doi: 10.1007/s11999-009-0734-9. PubMed DOI PMC

Hosseinzadeh P, Kiebzak G, Dolan L, Zionts L, Morcuende J. Management of clubfoot relapses with the ponseti method: Results of a survey of the POSNA members. J. Pediatr. Orthop. 2019;39:38–41. doi: 10.1097/BPO.0000000000000953. PubMed DOI

Dobbs MB, et al. Factors predictive of outcome after use of the Ponseti method for the treatment of idiopathic clubfeet. J. Bone Joint. Surg. Am. 2004;86:22–27. doi: 10.2106/00004623-200401000-00005. PubMed DOI

Li C, Nguyen Q, Cole WG, Alman BA. Potential treatment for clubfeet based on growth factor blockade. J. Pediatr. Orthop. 2001;21:372–377. PubMed

Eckhardt A, et al. Novel contribution to clubfoot pathogenesis: The possible role of extracellular matrix proteins. J. Orthop. Res. 2019;37:769–778. doi: 10.1002/jor.24211. PubMed DOI

Novotny T, et al. Increased microvessel and arteriole density in the contracted side of the relapsed clubfoot. J. Pediatr. Orthop. 2020;40:592–596. doi: 10.1097/BPO.0000000000001563. PubMed DOI

Holzer LA, Cör A, Pfandlsteiner G, Holzer G. Expression of VEGF, its receptors, and HIF-1α in Dupuytren’s disease. Acta Orthop. 2013;84:420–425. doi: 10.3109/17453674.2013.814011. PubMed DOI PMC

Krakhotkin DV, Chernylovskyi VA, Mottrie A, Greco F, Bugaev RA. New insights into the pathogenesis of Peyronie’s disease: A narrative review. Chronic Dis. Transl. Med. 2020;6:165–181. doi: 10.1016/j.cdtm.2020.06.001. PubMed DOI PMC

Haase VH. Hypoxia-inducible factor signaling in the development of kidney fibrosis. Fibrogenesis Tissue Repair. 2012;5:S16. doi: 10.1186/1755-1536-5-S1-S16. PubMed DOI PMC

Cai J, Hu M, Chen Z, Ling Z. The roles and mechanisms of hypoxia in liver fibrosis. J. Transl. Med. 2021;19:186. doi: 10.1186/s12967-021-02854-x. PubMed DOI PMC

Chen P-S, et al. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 2020;27:63. doi: 10.1186/s12929-020-00658-7. PubMed DOI PMC

Knitlova J, et al. Increased collagen crosslinking in stiff clubfoot tissue: Implications for the improvement of therapeutic strategies. Int. J. Mol. Sci. 2021;22:11903. doi: 10.3390/ijms222111903. PubMed DOI PMC

Shabtai L, Specht SC, Herzenberg JE. Worldwide spread of the Ponseti method for clubfoot. World J. Orthop. 2014;5:585–590. doi: 10.5312/wjo.v5.i5.585. PubMed DOI PMC

Ponseti IV. Relapsing clubfoot: Causes, prevention, and treatment. Iowa Orthop. J. 2002;22:55–56. PubMed PMC

Iyer NV, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998;12:149–162. doi: 10.1101/gad.12.2.149. PubMed DOI PMC

Novotný T, et al. Mast cell stabilization with sodium cromoglycate modulates pulmonary vessel wall remodeling during four-day hypoxia in rats. Exp. Lung Res. 2015;41:283–292. doi: 10.3109/01902148.2015.1018558. PubMed DOI

Novotný T, Uhlík J, Vajner L. Four-day pulse of sodium cromoglycate modulates pulmonary vessel wall remodeling during 21-day hypoxia in rats. Exp. Lung. Res. 2018;44:1–12. doi: 10.1080/01902148.2017.1393708. PubMed DOI

Misra S, Shergill U, Yang B, Janardhanan R, Misra KD. Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency. J. Vasc. Interv. Radiol. 2010;21:1255–1261. doi: 10.1016/j.jvir.2010.02.043. PubMed DOI PMC

Biswas S, et al. CD31 angiogenesis and combined expression of HIF-1α and HIF-2α are prognostic in primary clear-cell renal cell carcinoma (CC-RCC), but HIFα transcriptional products are not: Implications for antiangiogenic trials and HIFα biomarker studies in primary CC-RCC. Carcinogenesis. 2012;33:1717–1725. doi: 10.1093/carcin/bgs222. PubMed DOI

Liu Y, et al. MMP-2 and MMP-9 contribute to the angiogenic effect produced by hypoxia/15-HETE in pulmonary endothelial cells. J. Mol. Cell Cardiol. 2018;121:36–50. doi: 10.1016/j.yjmcc.2018.06.006. PubMed DOI

Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol. 2018;81:241–330. doi: 10.1016/bs.apha.2017.08.002. PubMed DOI PMC

Karsdal MA, et al. The good and the bad collagens of fibrosis: Their role in signaling and organ function. Adv. Drug Deliv. Rev. 2017;121:43–56. doi: 10.1016/j.addr.2017.07.014. PubMed DOI

Ottino P, et al. Hypoxia activates matrix metalloproteinase expression and the VEGF system in monkey choroid-retinal endothelial cells: Involvement of cytosolic phospholipase A2 activity. Mol. Vis. 2004;10:341–350. PubMed

Žaloudíková M, et al. Decreased collagen VI in the tunica media of pulmonary vessels during exposure to hypoxia: A novel step in pulmonary arterial remodeling. Pulm. Circ. 2019 doi: 10.1177/2045894019860747. PubMed DOI PMC

Chelladurai P, Seeger W, Pullamsetti SS. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. Eur. Respir. J. 2012;40:766–782. doi: 10.1183/09031936.00209911. PubMed DOI

Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 2006;69:614–624. doi: 10.1016/j.cardiores.2005.08.002. PubMed DOI

Mallikarjuna P, Raviprakash T, Aripaka K, Ljungberg B, Landström M. Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle. 2019;18:1–16. doi: 10.1080/15384101.2019.1642069. PubMed DOI PMC

Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors. 2011;29:196–202. doi: 10.3109/08977194.2011.595714. PubMed DOI PMC

Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:298–309. doi: 10.1016/j.bbadis.2016.11.006. PubMed DOI PMC

Bochaton-Piallat M-L, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: Answered and unanswered questions. F1000 Res. 2016;5:752. doi: 10.12688/f1000research.8190.1. PubMed DOI PMC

Bielefeld KA, et al. Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J. Biol. Chem. 2011;286:27687–27697. doi: 10.1074/jbc.M111.261677. PubMed DOI PMC

Kim K, et al. β-Catenin overexpression augments angiogenesis and skeletal muscle regeneration through dual mechanism of vascular endothelial growth factor-mediated endothelial cell proliferation and progenitor cell mobilization. Arterioscler. Thromb. Vasc. Biol. 2006;26:91–98. doi: 10.1161/01.ATV.0000193569.12490.4b. PubMed DOI

Kasprzycka M, Hammarström C, Haraldsen G. Tenascins in fibrotic disorders: From bench to bedside. Cell Adher. Migr. 2015;9:83–89. doi: 10.4161/19336918.2014.994901. PubMed DOI PMC

Schietke R, et al. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress e-cadherin in hypoxia: Insights into cellular transformation processes mediated by HIF-1. J. Biol. Chem. 2010;285:6658–6669. doi: 10.1074/jbc.M109.042424. PubMed DOI PMC

Higgins DF, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 2007;117:3810–3820. doi: 10.1172/JCI30487. PubMed DOI PMC

Levental KR, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906. doi: 10.1016/j.cell.2009.10.027. PubMed DOI PMC

Pez F, et al. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res. 2011;71:1647–1657. doi: 10.1158/0008-5472.CAN-10-1516. PubMed DOI

Barker HE, Cox TR, Erler JT. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer. 2012;12:540–552. doi: 10.1038/nrc3319. PubMed DOI

Grek CL, Newton DA, Spyropoulos DD, Baatz JE. Hypoxia up-regulates expression of hemoglobin in alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 2011;44:439–447. doi: 10.1165/rcmb.2009-0307OC. PubMed DOI PMC

Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. Hemoglobin α in the blood vessel wall. Free Radic. Biol. Med. 2014;73:136–142. doi: 10.1016/j.freeradbiomed.2014.04.019. PubMed DOI PMC

Maman S, et al. The beta subunit of hemoglobin (HBB2/HBB) suppresses neuroblastoma growth and metastasis. Cancer Res. 2017;77:14–26. doi: 10.1158/0008-5472. PubMed DOI

Ponzetti M, et al. Non-conventional role of haemoglobin beta in breast malignancy. Br. J. Cancer. 2017;117:994–1006. doi: 10.1038/bjc.2017.247. PubMed DOI PMC

Cai G, et al. Integrated bioinformatics analysis of potential pathway biomarkers using abnormal proteins in clubfoot. PeerJ. 2020;8:e8422. doi: 10.7717/peerj.8422. PubMed DOI PMC

Satish L, et al. Developing an animal model of Dupuytren’s disease by orthotopic transplantation of human fibroblasts into athymic rat. BMC Musculoskelet. Disord. 2015;16:138. doi: 10.1186/s12891-015-0597-z. PubMed DOI PMC

Nanchahal J, et al. Anti-tumour necrosis factor therapy for Dupuytren’s disease: A randomised dose response proof of concept phase 2a clinical trial. EBioMedicine. 2018;33:282–288. doi: 10.1016/j.ebiom.2018.06.022. PubMed DOI PMC

Knitlova J, et al. Minoxidil decreases collagen I deposition and tissue-like contraction in clubfoot-derived cells: A way to improve conservative treatment of relapsed clubfoot? Connect. Tissue Res. 2021;62:554–569. doi: 10.1080/03008207.2020.1816992. PubMed DOI

Johnson SJ, Walker FR. Strategies to improve quantitative assessment of immunohistochemical and immunofluorescent labelling. Sci. Rep. 2015;5:10607. doi: 10.1038/srep10607. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...