Increased Collagen Crosslinking in Stiff Clubfoot Tissue: Implications for the Improvement of Therapeutic Strategies

. 2021 Nov 02 ; 22 (21) : . [epub] 20211102

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34769331

Grantová podpora
GA UK No. 410121 Charles University
AZV No. 17-31564A the Ministry of Health of the Czech Republic
No. IGA-KZ-217116003 Krajska zdravotni a.s., Usti nad Labem, Czech Republic

Congenital clubfoot is a complex musculoskeletal deformity, in which a stiff, contracted tissue forms in the medial part of the foot. Fibrotic changes are associated with increased collagen deposition and lysyl oxidase (LOX)-mediated crosslinking, which impair collagen degradation and increase the tissue stiffness. First, we studied collagen deposition, as well as the expression of collagen and the amount of pyridinoline and deoxypyridinoline crosslinks in the tissue of relapsed clubfoot by immunohistochemistry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA). We then isolated fibroblast-like cells from the contracted tissue to study the potential inhibition of these processes in vitro. We assessed the effects of a LOX inhibitor, β-aminopropionitrile (BAPN), on the cells by a hydroxyproline assay, ELISA, and Second Harmonic Generation imaging. We also evaluated the cell-mediated contraction of extracellular matrix in 3D cell-populated collagen gels. For the first time, we have confirmed significantly increased crosslinking and excessive collagen type I deposition in the clubfoot-contracted tissue. We successfully reduced these processes in vitro in a dose-dependent manner with 10-40 µg/mL of BAPN, and we observed an increasing trend in the inhibition of the cell-mediated contraction of collagen gels. The in vitro inhibitory effects indicate that BAPN has good potential for the treatment of relapsed and resistant clubfeet.

Zobrazit více v PubMed

Smythe T., Kuper H., Macleod D., Foster A., Lavy C. Birth Prevalence of Congenital Talipes Equinovarus in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Trop. Med. Int. Health. 2017;22:269–285. doi: 10.1111/tmi.12833. PubMed DOI

Chen C., Kaushal N., Scher D.M., Doyle S.M., Blanco J.S., Dodwell E.R. Clubfoot Etiology: A Meta-Analysis and Systematic Review of Observational and Randomized Trials. J. Pediatr. Orthop. 2018;38:e462. doi: 10.1097/BPO.0000000000001191. PubMed DOI

Pavone V., Chisari E., Vescio A., Lucenti L., Sessa G., Testa G. The Etiology of Idiopathic Congenital Talipes Equinovarus: A Systematic Review. J. Orthop. Surg. 2018;13:206. doi: 10.1186/s13018-018-0913-z. PubMed DOI PMC

Dobbs M.B., Gurnett C.A. Update on Clubfoot: Etiology and Treatment. Clin. Orthop. 2009;467:1146–1153. doi: 10.1007/s11999-009-0734-9. PubMed DOI PMC

He J.-P., Shao J.F., Hao Y. Comparison of Different Conservative Treatments for Idiopathic Clubfoot: Ponseti’s versus Non-Ponseti’s Methods. J. Int. Med. Res. 2017;45:1190–1199. doi: 10.1177/0300060517706801. PubMed DOI PMC

Dobbs M.B., Rudzki J.R., Purcell D.B., Walton T., Porter K.R., Gurnett C.A. Factors Predictive of Outcome after Use of the Ponseti Method for the Treatment of Idiopathic Clubfeet. J. Bone Joint Surg. Am. 2004;86:22–27. doi: 10.2106/00004623-200401000-00005. PubMed DOI

Zionts L.E., Dietz F.R. Bracing Following Correction of Idiopathic Clubfoot Using the Ponseti Method. J. Am. Acad. Orthop. Surg. 2010;18:486–493. doi: 10.5435/00124635-201008000-00005. PubMed DOI

Ošťádal M., Chomiak J., Dungl P., Frydrychová M., Burian M. Comparison of the Short-Term and Long-Term Results of the Ponseti Method in the Treatment of Idiopathic Pes Equinovarus. Int. Orthop. 2013;37:1821–1825. doi: 10.1007/s00264-013-2033-z. PubMed DOI PMC

Limpaphayom N., Sailohit P. Factors Related to Early Recurrence of Idiopathic Clubfoot Post the Ponseti Method. Malays. Orthop. J. 2019;13:28–33. doi: 10.5704/MOJ.1911.005. PubMed DOI PMC

Ippolito E. Update on Pathologic Anatomy of Clubfoot. J. Pediatr. Orthop. B. 1995;4:17–24. doi: 10.1097/01202412-199504010-00003. PubMed DOI

Sano H., Uhthoff H.K., Jarvis J.G., Mansingh A., Wenckebach G.F. Pathogenesis of Soft-Tissue Contracture in Club Foot. J. Bone Joint Surg. Br. 1998;80:641–644. doi: 10.1302/0301-620X.80B4.0800641. PubMed DOI

Zimny M.L., Willig S.J., Roberts J.M., D’Ambrosia R.D. An Electron Microscopic Study of the Fascia from the Medial and Lateral Sides of Clubfoot. J. Pediatr. Orthop. 1985;5:577–581. doi: 10.1097/01241398-198509000-00014. PubMed DOI

Fukuhara K., Schollmeier G., Uhthoff H.K. The Pathogenesis of Club Foot. A Histomorphometric and Immunohistochemical Study of Fetuses. J. Bone Joint Surg. Br. 1994;76:450–457. doi: 10.1302/0301-620X.76B3.8175852. PubMed DOI

Li C., Nguyen Q., Cole W.G., Alman B.A. Potential Treatment for Clubfeet Based on Growth Factor Blockade. J. Pediatr. Orthop. 2001;21:372–377. doi: 10.1097/01241398-200105000-00021. PubMed DOI

Khan A.M., Ryan M.G., Gruber M.M., Haralabatos S.P., Badalamente M.A. Connective Tissue Structures in Clubfoot: A Morphologic Study. J. Pediatr. Orthop. 2001;21:708–712. doi: 10.1097/01241398-200111000-00002. PubMed DOI

Ošťádal M., Eckhardt A., Herget J., Mikšík I., Dungl P., Chomiak J., Frydrychová M., Burian M. Proteomic Analysis of the Extracellular Matrix in Idiopathic Pes Equinovarus. Mol. Cell. Biochem. 2015;401:133–139. doi: 10.1007/s11010-014-2300-3. PubMed DOI

Eckhardt A., Novotny T., Doubkova M., Hronkova L., Vajner L., Pataridis S., Hadraba D., Kulhava L., Plencner M., Knitlova J., et al. Novel Contribution to Clubfoot Pathogenesis: The Possible Role of Extracellular Matrix Proteins. J. Orthop. Res. 2019;37:769–778. doi: 10.1002/jor.24211. PubMed DOI

Novotny T., Eckhardt A., Knitlova J., Doubkova M., Ostadal M., Uhlik J., Musilkova J. Increased Microvessel and Arteriole Density in the Contracted Side of the Relapsed Clubfoot. J. Pediatr. Orthop. 2020;40:592–596. doi: 10.1097/BPO.0000000000001563. PubMed DOI

Oxlund H., Barckman M., Ørtoft G., Andreassen T.T. Reduced Concentrations of Collagen Cross-Links Are Associated with Reduced Strength of Bone. Bone. 1995;17:S365–S371. doi: 10.1016/8756-3282(95)00328-B. PubMed DOI

Poon R., Li C., Alman B.A. Beta-Catenin Mediates Soft Tissue Contracture in Clubfoot. Clin. Orthop. 2009;467:1180–1185. doi: 10.1007/s11999-008-0692-7. PubMed DOI PMC

Knitlova J., Doubkova M., Plencner M., Vondrasek D., Eckhardt A., Ostadal M., Musilkova J., Bacakova L., Novotny T. Minoxidil Decreases Collagen I Deposition and Tissue-like Contraction in Clubfoot-Derived Cells: A Way to Improve Conservative Treatment of Relapsed Clubfoot? Connect. Tissue Res. 2021;62:554–569. doi: 10.1080/03008207.2020.1816992. PubMed DOI

Vallet S.D., Ricard-Blum S. Lysyl Oxidases: From Enzyme Activity to Extracellular Matrix Cross-Links. Essays Biochem. 2019;63:349–364. doi: 10.1042/EBC20180050. PubMed DOI

Redden R.A., Doolin E.J. Collagen Crosslinking and Cell Density Have Distinct Effects on Fibroblast-Mediated Contraction of Collagen Gels: Collagen Crosslinking and Cell Density Effects. Skin Res. Technol. 2003;9:290–293. doi: 10.1034/j.1600-0846.2003.00023.x. PubMed DOI

Harrison C.A., Gossiel F., Bullock A.J., Sun T., Blumsohn A., Mac Neil S. Investigation of Keratinocyte Regulation of Collagen I Synthesis by Dermal Fibroblasts in a Simple in Vitro Model. Br. J. Dermatol. 2006;154:401–410. doi: 10.1111/j.1365-2133.2005.07022.x. PubMed DOI

Kanzaki M., Yamato M., Takagi R., Kikkawa T., Isaka T., Okano T., Onuki T. Controlled Collagen Crosslinking Process in Tissue-Engineered Fibroblast Sheets for Preventing Scar Contracture on the Surface of Lungs: Controlled Collagen Cross-Linking Step in Tissue-Engineered Fibroblast Sheets. J. Tissue Eng. Regen. Med. 2013;7:383–391. doi: 10.1002/term.533. PubMed DOI

González-Santamaría J., Villalba M., Busnadiego O., López-Olañeta M.M., Sandoval P., Snabel J., López-Cabrera M., Erler J.T., Hanemaaijer R., Lara-Pezzi E., et al. Matrix Cross-Linking Lysyl Oxidases Are Induced in Response to Myocardial Infarction and Promote Cardiac Dysfunction. Cardiovasc. Res. 2016;109:67–78. doi: 10.1093/cvr/cvv214. PubMed DOI

International Organization for Standardization ISO 10993-5:2009(E): Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity 2009. [(accessed on 15 October 2021)]. Available online: https://www.iso.org/standard/36406.html.

Karsdal M.A., Nielsen S.H., Leeming D.J., Langholm L.L., Nielsen M.J., Manon-Jensen T., Siebuhr A., Gudmann N.S., Rønnow S., Sand J.M., et al. The good and the bad collagens of fibrosis—their role in signaling and organ function. Adv. Drug Deliv. Rev. 2017;121:43–56. doi: 10.1016/j.addr.2017.07.014. PubMed DOI

Williams L.M., McCann F.E., Cabrita M.A., Lyaton T., Cribbs A., Knezevic B., Fang H., Knight J., Zhang M., Fischer R., et al. Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proc. Natl. Acad Sci. USA. 2020;117:20753–20763. doi: 10.1073/pnas.2004281117. PubMed DOI PMC

van der Sluijs J.A., Pruys J.E. Normal Collagen Structure in the Posterior Ankle Capsule in Different Types of Clubfeet. J. Pediatr. Orthop. Part B. 1999;8:261–263. PubMed

Moriguchi T., Fujimoto D. Crosslink of Collagen in Hypertrophic Scar. J. Invest. Dermatol. 1979;72:143–145. doi: 10.1111/1523-1747.ep12530609. PubMed DOI

Couppé C., Hansen P., Kongsgaard M., Kovanen V., Suetta C., Aagaard P., Kjær M., Magnusson S.P. Mechanical Properties and Collagen Cross-Linking of the Patellar Tendon in Old and Young Men. J. Appl. Physiol. 2009;107:880–886. doi: 10.1152/japplphysiol.00291.2009. PubMed DOI

Bailey A.J., Light N.D. Intermolecular Cross-Linking in Fibrotic Collagen. Ciba Found. Symp. 1985;114:80–96. doi: 10.1002/9780470720950.ch6. PubMed DOI

Ricard-Blum S., Esterre P., Grimaud J.A. Collagen Cross-Linking by Pyridinoline Occurs in Non-Reversible Skin Fibrosis. Cell. Mol. Biol. Noisy--Gd. Fr. 1993;39:723–727. PubMed

Ištok R., Bély M., Stančíková M., Rovenský J. Evidence for Increased Pyridinoline Concentration in Fibrotic Tissues in Diffuse Systemic Sclerosis: Increased Pyridinoline in Diffuse SSc. Clin. Exp. Dermatol. 2001;26:545–547. doi: 10.1046/j.1365-2230.2001.00886.x. PubMed DOI

Piersma B., Bank R.A. Collagen Cross-Linking Mediated by Lysyl Hydroxylase 2: An Enzymatic Battlefield to Combat Fibrosis. Essays Biochem. 2019;63:377–387. doi: 10.1042/EBC20180051. PubMed DOI

Zuurmond A., Vanderslotverhoeven A., Vandura E., Degroot J., Bank R. Minoxidil Exerts Different Inhibitory Effects on Gene Expression of Lysyl Hydroxylase 1, 2, and 3: Implications for Collagen Cross-Linking and Treatment of Fibrosis. Matrix Biol. 2005;24:261–270. doi: 10.1016/j.matbio.2005.04.002. PubMed DOI

Baaijens F., Bouten C., Driessen N. Modeling Collagen Remodeling. J. Biomech. 2010;43:166–175. doi: 10.1016/j.jbiomech.2009.09.022. PubMed DOI

Silver F.H., Freeman J.W., Seehra G.P. Collagen Self-Assembly and the Development of Tendon Mechanical Properties. J. Biomech. 2003;36:1529–1553. doi: 10.1016/S0021-9290(03)00135-0. PubMed DOI

Alfonso-Rodríguez C.-A., Garzón I., Garrido-Gómez J., Oliveira A.-C.-X., Martín-Piedra M.-Á., Scionti G., Carriel V., Hernández-Cortés P., Campos A., Alaminos M. Identification of Histological Patterns in Clinically Affected and Unaffected Palm Regions in Dupuytren’s Disease. PLoS ONE. 2014;9:e112457. doi: 10.1371/journal.pone.0112457. PubMed DOI PMC

Buehler M.J. Nanomechanics of Collagen Fibrils under Varying Cross-Link Densities: Atomistic and Continuum Studies. J. Mech. Behav. Biomed. Mater. 2008;1:59–67. doi: 10.1016/j.jmbbm.2007.04.001. PubMed DOI

Van der Slot A.J., Zuurmond A.-M., van den Bogaerdt A.J., Ulrich M.M.W., Middelkoop E., Boers W., Karel Ronday H., DeGroot J., Huizinga T.W.J., Bank R.A. Increased Formation of Pyridinoline Cross-Links Due to Higher Telopeptide Lysyl Hydroxylase Levels Is a General Fibrotic Phenomenon. Matrix Biol. 2004;23:251–257. doi: 10.1016/j.matbio.2004.06.001. PubMed DOI

Yamauchi M., Sricholpech M. Lysine Post-Translational Modifications of Collagen. Essays Biochem. 2012;52:113–133. doi: 10.1042/bse0520113. PubMed DOI PMC

Nguyen X.-X., Nishimoto T., Takihara T., Mlakar L., Bradshaw A.D., Feghali-Bostwick C. Lysyl Oxidase Directly Contributes to Extracellular Matrix Production and Fibrosis in Systemic Sclerosis. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2021;320:L29–L40. doi: 10.1152/ajplung.00173.2020. PubMed DOI PMC

Tjin G., White E.S., Faiz A., Sicard D., Tschumperlin D.J., Mahar A., Kable E.P.W., Burgess J.K. Lysyl Oxidases Regulate Fibrillar Collagen Remodelling in Idiopathic Pulmonary Fibrosis. Dis. Model. Mech. 2017;10:1301–1312. doi: 10.1242/dmm.030114. PubMed DOI PMC

Dallon J.C., Ehrlich H.P. A Review of Fibroblast-Populated Collagen Lattices. Wound Repair Regen. 2008;16:472–479. doi: 10.1111/j.1524-475X.2008.00392.x. PubMed DOI

Woodley D.T., Yamauchi M., Wynn K.C., Mechanic G., Briggaman R.A. Collagen Telopeptides (Cross-Linking Sites) Play a Role in Collagen Gel Lattice Contraction. J. Invest. Dermatol. 1991;97:580–585. doi: 10.1111/1523-1747.ep12481920. PubMed DOI

Kato S., Spinale F.G., Tanaka R., Johnson W., Cooper G., Zile M.R. Inhibition of Collagen Cross-Linking: Effects on Fibrillar Collagen and Ventricular Diastolic Function. Am. J. Physiol.-Heart Circ. Physiol. 1995;269:H863–H868. doi: 10.1152/ajpheart.1995.269.3.H863. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...