Increased Collagen Crosslinking in Stiff Clubfoot Tissue: Implications for the Improvement of Therapeutic Strategies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA UK No. 410121
Charles University
AZV No. 17-31564A
the Ministry of Health of the Czech Republic
No. IGA-KZ-217116003
Krajska zdravotni a.s., Usti nad Labem, Czech Republic
PubMed
34769331
PubMed Central
PMC8584281
DOI
10.3390/ijms222111903
PII: ijms222111903
Knihovny.cz E-zdroje
- Klíčová slova
- beta-aminopropionitrile (BAPN), collagen, congenital idiopathic Talipes equinovarus, contraction, crosslinking, fibrosis, relapsed clubfoot,
- MeSH
- aminopropionitril farmakologie MeSH
- fibroblasty účinky léků MeSH
- kolagen chemie MeSH
- lidé MeSH
- lysyloxidasa antagonisté a inhibitory MeSH
- pes equinovarus farmakoterapie metabolismus patologie MeSH
- předškolní dítě MeSH
- reagencia zkříženě vázaná farmakologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminopropionitril MeSH
- kolagen MeSH
- LOX protein, human MeSH Prohlížeč
- lysyloxidasa MeSH
- reagencia zkříženě vázaná MeSH
Congenital clubfoot is a complex musculoskeletal deformity, in which a stiff, contracted tissue forms in the medial part of the foot. Fibrotic changes are associated with increased collagen deposition and lysyl oxidase (LOX)-mediated crosslinking, which impair collagen degradation and increase the tissue stiffness. First, we studied collagen deposition, as well as the expression of collagen and the amount of pyridinoline and deoxypyridinoline crosslinks in the tissue of relapsed clubfoot by immunohistochemistry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA). We then isolated fibroblast-like cells from the contracted tissue to study the potential inhibition of these processes in vitro. We assessed the effects of a LOX inhibitor, β-aminopropionitrile (BAPN), on the cells by a hydroxyproline assay, ELISA, and Second Harmonic Generation imaging. We also evaluated the cell-mediated contraction of extracellular matrix in 3D cell-populated collagen gels. For the first time, we have confirmed significantly increased crosslinking and excessive collagen type I deposition in the clubfoot-contracted tissue. We successfully reduced these processes in vitro in a dose-dependent manner with 10-40 µg/mL of BAPN, and we observed an increasing trend in the inhibition of the cell-mediated contraction of collagen gels. The in vitro inhibitory effects indicate that BAPN has good potential for the treatment of relapsed and resistant clubfeet.
2nd Faculty of Medicine Charles University 5 Uvalu 84 150 06 Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Videnska 1083 142 20 Prague Czech Republic
Zobrazit více v PubMed
Smythe T., Kuper H., Macleod D., Foster A., Lavy C. Birth Prevalence of Congenital Talipes Equinovarus in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Trop. Med. Int. Health. 2017;22:269–285. doi: 10.1111/tmi.12833. PubMed DOI
Chen C., Kaushal N., Scher D.M., Doyle S.M., Blanco J.S., Dodwell E.R. Clubfoot Etiology: A Meta-Analysis and Systematic Review of Observational and Randomized Trials. J. Pediatr. Orthop. 2018;38:e462. doi: 10.1097/BPO.0000000000001191. PubMed DOI
Pavone V., Chisari E., Vescio A., Lucenti L., Sessa G., Testa G. The Etiology of Idiopathic Congenital Talipes Equinovarus: A Systematic Review. J. Orthop. Surg. 2018;13:206. doi: 10.1186/s13018-018-0913-z. PubMed DOI PMC
Dobbs M.B., Gurnett C.A. Update on Clubfoot: Etiology and Treatment. Clin. Orthop. 2009;467:1146–1153. doi: 10.1007/s11999-009-0734-9. PubMed DOI PMC
He J.-P., Shao J.F., Hao Y. Comparison of Different Conservative Treatments for Idiopathic Clubfoot: Ponseti’s versus Non-Ponseti’s Methods. J. Int. Med. Res. 2017;45:1190–1199. doi: 10.1177/0300060517706801. PubMed DOI PMC
Dobbs M.B., Rudzki J.R., Purcell D.B., Walton T., Porter K.R., Gurnett C.A. Factors Predictive of Outcome after Use of the Ponseti Method for the Treatment of Idiopathic Clubfeet. J. Bone Joint Surg. Am. 2004;86:22–27. doi: 10.2106/00004623-200401000-00005. PubMed DOI
Zionts L.E., Dietz F.R. Bracing Following Correction of Idiopathic Clubfoot Using the Ponseti Method. J. Am. Acad. Orthop. Surg. 2010;18:486–493. doi: 10.5435/00124635-201008000-00005. PubMed DOI
Ošťádal M., Chomiak J., Dungl P., Frydrychová M., Burian M. Comparison of the Short-Term and Long-Term Results of the Ponseti Method in the Treatment of Idiopathic Pes Equinovarus. Int. Orthop. 2013;37:1821–1825. doi: 10.1007/s00264-013-2033-z. PubMed DOI PMC
Limpaphayom N., Sailohit P. Factors Related to Early Recurrence of Idiopathic Clubfoot Post the Ponseti Method. Malays. Orthop. J. 2019;13:28–33. doi: 10.5704/MOJ.1911.005. PubMed DOI PMC
Ippolito E. Update on Pathologic Anatomy of Clubfoot. J. Pediatr. Orthop. B. 1995;4:17–24. doi: 10.1097/01202412-199504010-00003. PubMed DOI
Sano H., Uhthoff H.K., Jarvis J.G., Mansingh A., Wenckebach G.F. Pathogenesis of Soft-Tissue Contracture in Club Foot. J. Bone Joint Surg. Br. 1998;80:641–644. doi: 10.1302/0301-620X.80B4.0800641. PubMed DOI
Zimny M.L., Willig S.J., Roberts J.M., D’Ambrosia R.D. An Electron Microscopic Study of the Fascia from the Medial and Lateral Sides of Clubfoot. J. Pediatr. Orthop. 1985;5:577–581. doi: 10.1097/01241398-198509000-00014. PubMed DOI
Fukuhara K., Schollmeier G., Uhthoff H.K. The Pathogenesis of Club Foot. A Histomorphometric and Immunohistochemical Study of Fetuses. J. Bone Joint Surg. Br. 1994;76:450–457. doi: 10.1302/0301-620X.76B3.8175852. PubMed DOI
Li C., Nguyen Q., Cole W.G., Alman B.A. Potential Treatment for Clubfeet Based on Growth Factor Blockade. J. Pediatr. Orthop. 2001;21:372–377. doi: 10.1097/01241398-200105000-00021. PubMed DOI
Khan A.M., Ryan M.G., Gruber M.M., Haralabatos S.P., Badalamente M.A. Connective Tissue Structures in Clubfoot: A Morphologic Study. J. Pediatr. Orthop. 2001;21:708–712. doi: 10.1097/01241398-200111000-00002. PubMed DOI
Ošťádal M., Eckhardt A., Herget J., Mikšík I., Dungl P., Chomiak J., Frydrychová M., Burian M. Proteomic Analysis of the Extracellular Matrix in Idiopathic Pes Equinovarus. Mol. Cell. Biochem. 2015;401:133–139. doi: 10.1007/s11010-014-2300-3. PubMed DOI
Eckhardt A., Novotny T., Doubkova M., Hronkova L., Vajner L., Pataridis S., Hadraba D., Kulhava L., Plencner M., Knitlova J., et al. Novel Contribution to Clubfoot Pathogenesis: The Possible Role of Extracellular Matrix Proteins. J. Orthop. Res. 2019;37:769–778. doi: 10.1002/jor.24211. PubMed DOI
Novotny T., Eckhardt A., Knitlova J., Doubkova M., Ostadal M., Uhlik J., Musilkova J. Increased Microvessel and Arteriole Density in the Contracted Side of the Relapsed Clubfoot. J. Pediatr. Orthop. 2020;40:592–596. doi: 10.1097/BPO.0000000000001563. PubMed DOI
Oxlund H., Barckman M., Ørtoft G., Andreassen T.T. Reduced Concentrations of Collagen Cross-Links Are Associated with Reduced Strength of Bone. Bone. 1995;17:S365–S371. doi: 10.1016/8756-3282(95)00328-B. PubMed DOI
Poon R., Li C., Alman B.A. Beta-Catenin Mediates Soft Tissue Contracture in Clubfoot. Clin. Orthop. 2009;467:1180–1185. doi: 10.1007/s11999-008-0692-7. PubMed DOI PMC
Knitlova J., Doubkova M., Plencner M., Vondrasek D., Eckhardt A., Ostadal M., Musilkova J., Bacakova L., Novotny T. Minoxidil Decreases Collagen I Deposition and Tissue-like Contraction in Clubfoot-Derived Cells: A Way to Improve Conservative Treatment of Relapsed Clubfoot? Connect. Tissue Res. 2021;62:554–569. doi: 10.1080/03008207.2020.1816992. PubMed DOI
Vallet S.D., Ricard-Blum S. Lysyl Oxidases: From Enzyme Activity to Extracellular Matrix Cross-Links. Essays Biochem. 2019;63:349–364. doi: 10.1042/EBC20180050. PubMed DOI
Redden R.A., Doolin E.J. Collagen Crosslinking and Cell Density Have Distinct Effects on Fibroblast-Mediated Contraction of Collagen Gels: Collagen Crosslinking and Cell Density Effects. Skin Res. Technol. 2003;9:290–293. doi: 10.1034/j.1600-0846.2003.00023.x. PubMed DOI
Harrison C.A., Gossiel F., Bullock A.J., Sun T., Blumsohn A., Mac Neil S. Investigation of Keratinocyte Regulation of Collagen I Synthesis by Dermal Fibroblasts in a Simple in Vitro Model. Br. J. Dermatol. 2006;154:401–410. doi: 10.1111/j.1365-2133.2005.07022.x. PubMed DOI
Kanzaki M., Yamato M., Takagi R., Kikkawa T., Isaka T., Okano T., Onuki T. Controlled Collagen Crosslinking Process in Tissue-Engineered Fibroblast Sheets for Preventing Scar Contracture on the Surface of Lungs: Controlled Collagen Cross-Linking Step in Tissue-Engineered Fibroblast Sheets. J. Tissue Eng. Regen. Med. 2013;7:383–391. doi: 10.1002/term.533. PubMed DOI
González-Santamaría J., Villalba M., Busnadiego O., López-Olañeta M.M., Sandoval P., Snabel J., López-Cabrera M., Erler J.T., Hanemaaijer R., Lara-Pezzi E., et al. Matrix Cross-Linking Lysyl Oxidases Are Induced in Response to Myocardial Infarction and Promote Cardiac Dysfunction. Cardiovasc. Res. 2016;109:67–78. doi: 10.1093/cvr/cvv214. PubMed DOI
International Organization for Standardization ISO 10993-5:2009(E): Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity 2009. [(accessed on 15 October 2021)]. Available online: https://www.iso.org/standard/36406.html.
Karsdal M.A., Nielsen S.H., Leeming D.J., Langholm L.L., Nielsen M.J., Manon-Jensen T., Siebuhr A., Gudmann N.S., Rønnow S., Sand J.M., et al. The good and the bad collagens of fibrosis—their role in signaling and organ function. Adv. Drug Deliv. Rev. 2017;121:43–56. doi: 10.1016/j.addr.2017.07.014. PubMed DOI
Williams L.M., McCann F.E., Cabrita M.A., Lyaton T., Cribbs A., Knezevic B., Fang H., Knight J., Zhang M., Fischer R., et al. Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proc. Natl. Acad Sci. USA. 2020;117:20753–20763. doi: 10.1073/pnas.2004281117. PubMed DOI PMC
van der Sluijs J.A., Pruys J.E. Normal Collagen Structure in the Posterior Ankle Capsule in Different Types of Clubfeet. J. Pediatr. Orthop. Part B. 1999;8:261–263. PubMed
Moriguchi T., Fujimoto D. Crosslink of Collagen in Hypertrophic Scar. J. Invest. Dermatol. 1979;72:143–145. doi: 10.1111/1523-1747.ep12530609. PubMed DOI
Couppé C., Hansen P., Kongsgaard M., Kovanen V., Suetta C., Aagaard P., Kjær M., Magnusson S.P. Mechanical Properties and Collagen Cross-Linking of the Patellar Tendon in Old and Young Men. J. Appl. Physiol. 2009;107:880–886. doi: 10.1152/japplphysiol.00291.2009. PubMed DOI
Bailey A.J., Light N.D. Intermolecular Cross-Linking in Fibrotic Collagen. Ciba Found. Symp. 1985;114:80–96. doi: 10.1002/9780470720950.ch6. PubMed DOI
Ricard-Blum S., Esterre P., Grimaud J.A. Collagen Cross-Linking by Pyridinoline Occurs in Non-Reversible Skin Fibrosis. Cell. Mol. Biol. Noisy--Gd. Fr. 1993;39:723–727. PubMed
Ištok R., Bély M., Stančíková M., Rovenský J. Evidence for Increased Pyridinoline Concentration in Fibrotic Tissues in Diffuse Systemic Sclerosis: Increased Pyridinoline in Diffuse SSc. Clin. Exp. Dermatol. 2001;26:545–547. doi: 10.1046/j.1365-2230.2001.00886.x. PubMed DOI
Piersma B., Bank R.A. Collagen Cross-Linking Mediated by Lysyl Hydroxylase 2: An Enzymatic Battlefield to Combat Fibrosis. Essays Biochem. 2019;63:377–387. doi: 10.1042/EBC20180051. PubMed DOI
Zuurmond A., Vanderslotverhoeven A., Vandura E., Degroot J., Bank R. Minoxidil Exerts Different Inhibitory Effects on Gene Expression of Lysyl Hydroxylase 1, 2, and 3: Implications for Collagen Cross-Linking and Treatment of Fibrosis. Matrix Biol. 2005;24:261–270. doi: 10.1016/j.matbio.2005.04.002. PubMed DOI
Baaijens F., Bouten C., Driessen N. Modeling Collagen Remodeling. J. Biomech. 2010;43:166–175. doi: 10.1016/j.jbiomech.2009.09.022. PubMed DOI
Silver F.H., Freeman J.W., Seehra G.P. Collagen Self-Assembly and the Development of Tendon Mechanical Properties. J. Biomech. 2003;36:1529–1553. doi: 10.1016/S0021-9290(03)00135-0. PubMed DOI
Alfonso-Rodríguez C.-A., Garzón I., Garrido-Gómez J., Oliveira A.-C.-X., Martín-Piedra M.-Á., Scionti G., Carriel V., Hernández-Cortés P., Campos A., Alaminos M. Identification of Histological Patterns in Clinically Affected and Unaffected Palm Regions in Dupuytren’s Disease. PLoS ONE. 2014;9:e112457. doi: 10.1371/journal.pone.0112457. PubMed DOI PMC
Buehler M.J. Nanomechanics of Collagen Fibrils under Varying Cross-Link Densities: Atomistic and Continuum Studies. J. Mech. Behav. Biomed. Mater. 2008;1:59–67. doi: 10.1016/j.jmbbm.2007.04.001. PubMed DOI
Van der Slot A.J., Zuurmond A.-M., van den Bogaerdt A.J., Ulrich M.M.W., Middelkoop E., Boers W., Karel Ronday H., DeGroot J., Huizinga T.W.J., Bank R.A. Increased Formation of Pyridinoline Cross-Links Due to Higher Telopeptide Lysyl Hydroxylase Levels Is a General Fibrotic Phenomenon. Matrix Biol. 2004;23:251–257. doi: 10.1016/j.matbio.2004.06.001. PubMed DOI
Yamauchi M., Sricholpech M. Lysine Post-Translational Modifications of Collagen. Essays Biochem. 2012;52:113–133. doi: 10.1042/bse0520113. PubMed DOI PMC
Nguyen X.-X., Nishimoto T., Takihara T., Mlakar L., Bradshaw A.D., Feghali-Bostwick C. Lysyl Oxidase Directly Contributes to Extracellular Matrix Production and Fibrosis in Systemic Sclerosis. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2021;320:L29–L40. doi: 10.1152/ajplung.00173.2020. PubMed DOI PMC
Tjin G., White E.S., Faiz A., Sicard D., Tschumperlin D.J., Mahar A., Kable E.P.W., Burgess J.K. Lysyl Oxidases Regulate Fibrillar Collagen Remodelling in Idiopathic Pulmonary Fibrosis. Dis. Model. Mech. 2017;10:1301–1312. doi: 10.1242/dmm.030114. PubMed DOI PMC
Dallon J.C., Ehrlich H.P. A Review of Fibroblast-Populated Collagen Lattices. Wound Repair Regen. 2008;16:472–479. doi: 10.1111/j.1524-475X.2008.00392.x. PubMed DOI
Woodley D.T., Yamauchi M., Wynn K.C., Mechanic G., Briggaman R.A. Collagen Telopeptides (Cross-Linking Sites) Play a Role in Collagen Gel Lattice Contraction. J. Invest. Dermatol. 1991;97:580–585. doi: 10.1111/1523-1747.ep12481920. PubMed DOI
Kato S., Spinale F.G., Tanaka R., Johnson W., Cooper G., Zile M.R. Inhibition of Collagen Cross-Linking: Effects on Fibrillar Collagen and Ventricular Diastolic Function. Am. J. Physiol.-Heart Circ. Physiol. 1995;269:H863–H868. doi: 10.1152/ajpheart.1995.269.3.H863. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
The possible role of hypoxia in the affected tissue of relapsed clubfoot