Harnessing the Biomimetic Effect of Macromolecular Crowding in the Cell-Derived Model of Clubfoot Fibrosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39214607
PubMed Central
PMC11480992
DOI
10.1021/acs.biomac.4c00653
Knihovny.cz E-zdroje
- MeSH
- biomimetika metody MeSH
- extracelulární matrix metabolismus účinky léků MeSH
- fibroblasty * metabolismus účinky léků MeSH
- fibróza * farmakoterapie MeSH
- kolagen * metabolismus chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- pes equinovarus * metabolismus farmakoterapie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kolagen * MeSH
Fibrotic changes in pediatric clubfoot provide an opportunity to improve corrective therapy and prevent relapses with targeted drugs. This study defines the parameters of clubfoot fibrosis and presents a unique analysis of a simple pseudo-3D in vitro model for disease-specific high-throughput drug screening experiments. The model combines clubfoot-derived fibroblasts with a biomimetic cultivation environment induced by the water-soluble polymers Ficoll and Polyvinylpyrrolidone, utilizing the principle of macromolecular crowding. We achieved higher conversion of soluble collagen into insoluble collagen, accelerated formation of the extracellular matrix layer and upregulated fibrosis-related genes in the mixed Ficoll environment. To test the model, we evaluated the effect of a potential antifibrotic drug, minoxidil, emphasizing collagen content and cross-linking. While the model amplified overall collagen deposition, minoxidil effectively blocked the expression of lysyl hydroxylases, which are responsible for the increased occurrence of specific collagen cross-linking in various fibrotic tissues. This limited the formation of collagen cross-link in both the model and control environments. Our findings provide a tool for expanding preclinical research for clubfoot and similar fibroproliferative conditions.
2nd Faculty of Medicine Charles University 5 Uvalu 84 150 06 Prague 5 Czech Republic
Faculty of Science Charles University Albertov 6 128 00 Prague 2 Czech Republic
Zobrazit více v PubMed
Ansar A.; Rahman A. E.; Romero L.; Haider M. R.; Rahman M. M.; Moinuddin M.; Siddique M. A. B.; Mamun M. A.; Mazumder T.; Pirani S. P.; Mathias R. G.; Arifeen S. E.; Hoque D. M. E. Systematic Review and Meta-Analysis of Global Birth Prevalence of Clubfoot: A Study Protocol. BMJ Open 2018, 8 (3), e01924610.1136/bmjopen-2017-019246. PubMed DOI PMC
Ippolito E. Update on Pathologic Anatomy of Clubfoot. J. Pediatr. Orthop. B 1995, 4 (1), 17–24. 10.1097/01202412-199504010-00003. PubMed DOI
Foster A.; Davis N. Congenital Talipes Equinovarus (Clubfoot). Surgery 2007, 25 (4), 171–175. 10.1016/j.mpsur.2007.04.001. DOI
Dobbs M. B.; Gurnett C. A. Update on Clubfoot: Etiology and Treatment. Clin. Orthop. Relat. Res. 2009, 467 (5), 1146–1153. 10.1007/s11999-009-0734-9. PubMed DOI PMC
Agarwal A.; Rastogi A.; Rastogi P.; Deo N. B. Relapses in Clubfoot Treated with Ponseti Technique and Standard Bracing Protocol - a Systematic Analysis. J. Clin. Orthop. Trauma 2021, 18, 199–204. 10.1016/j.jcot.2021.04.029. PubMed DOI PMC
van Schelven H.; Moerman S.; van der Steen M.; Besselaar A. T.; Greve C. Prognostic Factors for Recurrent Idiopathic Clubfoot Deformity: A Systematic Literature Review and Meta-Analysis. Acta Orthop. 2022, 11–28. 10.1080/17453674.2021.1982576. PubMed DOI PMC
Ošt’ádal M.; Chomiak J.; Dungl P.; Frydrychová M.; Burian M. Comparison of the Short-Term and Long-Term Results of the Ponseti Method in the Treatment of Idiopathic Pes Equinovarus. Int. Orthop. 2013, 37 (9), 1821–1825. 10.1007/s00264-013-2033-z. PubMed DOI PMC
Cummings R. J. The Effectiveness of Botulinum A Toxin as an Adjunct to the Treatment of Clubfeet by the Ponseti Method: A Randomized, Double Blind, Placebo Controlled Study. J. Pediatr. Orthop. 2009, 29 (6), 564–569. 10.1097/BPO.0b013e3181b2f21d. PubMed DOI
Alvarez C. M.; Wright J. G.; Chhina H.; Howren A.; Law P. Botulinum Toxin Type A Versus Placebo for Idiopathic Clubfoot: A Two-Center, Double-Blind, Randomized Controlled Trial. J. Bone Jt. Surg. Am. 2018, 100 (18), 1589–1596. 10.2106/JBJS.17.01652. PubMed DOI
Fietzek U. M.; Kossmehl P.; Schelosky L.; Ebersbach G.; Wissel J. Early Botulinum Toxin Treatment for Spastic Pes Equinovarus - a Randomized Double-Blind Placebo-Controlled Study. Eur. J. Neurol. 2014, 21 (8), 1089–1095. 10.1111/ene.12381. PubMed DOI
Fukuhara K.; Schollmeier G.; Uhthoff H. K. The Pathogenesis of Club Foot. A Histomorphometric and Immunohistochemical Study of Fetuses. J. Bone Jt. Surg., Br. Vol. 1994, 76-B (3), 450–457. 10.1302/0301-620X.76B3.8175852. PubMed DOI
Zimny M. L.; Willig S. J.; Roberts J. M.; D’Ambrosia R. D. An Electron Microscopic Study of the Fascia from the Medial and Lateral Sides of Clubfoot. J. Pediatr. Orthop. 1985, 5 (5), 577–581. 10.1097/01241398-198509000-00014. PubMed DOI
Sano H.; Uhthoff H. K.; Jarvis J. G.; Mansingh A.; Wenckebach G. F. Pathogenesis of Soft-Tissue Contracture in Club Foot. J. Bone Jt. Surg., Br. Vol. 1998, 80-B (4), 641–644. 10.1302/0301-620X.80B4.0800641. PubMed DOI
Li C.; Nguyen Q.; Cole W. G.; Alman B. A. Potential Treatment for Clubfeet Based on Growth Factor Blockade. J. Pediatr. Orthop. 2001, 21 (3), 372–377. 10.1097/01241398-200105000-00021. PubMed DOI
Poon R.; Li C.; Alman B. A. Beta-Catenin Mediates Soft Tissue Contracture in Clubfoot. Clin. Orthop. Relat. Res. 2009, 467 (5), 1180–1185. 10.1007/s11999-008-0692-7. PubMed DOI PMC
Ošt’ádal M.; Eckhardt A.; Herget J.; Mikšík I.; Dungl P.; Chomiak J.; Frydrychová M.; Burian M. Proteomic Analysis of the Extracellular Matrix in Idiopathic Pes Equinovarus. Mol. Cell. Biochem. 2015, 401 (1–2), 133–139. 10.1007/s11010-014-2300-3. PubMed DOI
Eckhardt A.; Novotny T.; Doubkova M.; Hronkova L.; Vajner L.; Pataridis S.; Hadraba D.; Kulhava L.; Plencner M.; Knitlova J.; Liskova J.; Uhlik J.; Zaloudikova M.; Vondrasek D.; Miksik I.; Ostadal M. Novel Contribution to Clubfoot Pathogenesis: The Possible Role of Extracellular Matrix Proteins. J. Orthop. Res. 2019, 37 (3), 769–778. 10.1002/jor.24211. PubMed DOI
Knitlova J.; Doubkova M.; Eckhardt A.; Ostadal M.; Musilkova J.; Bacakova L.; Novotny T. Increased Collagen Crosslinking in Stiff Clubfoot Tissue: Implications for the Improvement of Therapeutic Strategies. Int. J. Mol. Sci. 2021, 22 (21), 11903.10.3390/ijms222111903. PubMed DOI PMC
Novotny T.; Eckhardt A.; Doubkova M.; Knitlova J.; Vondrasek D.; Vanaskova E.; Ostadal M.; Uhlik J.; Bacakova L.; Musilkova J. The Possible Role of Hypoxia in the Affected Tissue of Relapsed Clubfoot. Sci. Rep. 2022, 12 (1), 446210.1038/s41598-022-08519-z. PubMed DOI PMC
Vondrášek D.; Hadraba D.; Přibyl J.; Eckhardt A.; Ošt’ádal M.; Lopot F.; Jelen K.; Doubková M.; Knitlová J.; Novotný T.; Janáček J. Microstructural Analysis of Collagenous Structures in Relapsed Clubfoot Tissue. Microsc. Microanal. 2023, 29 (1), 265–272. 10.1093/micmic/ozac012. DOI
Siani A. Pharmacological Treatment of Fibrosis: A Systematic Review of Clinical Trials. SN Compr. Clin. Med. 2020, 2 (5), 531–550. 10.1007/s42399-020-00292-2. DOI
Knitlova J.; Doubkova M.; Plencner M.; Vondrasek D.; Eckhardt A.; Ostadal M.; Musilkova J.; Bacakova L.; Novotny T. Minoxidil Decreases Collagen I Deposition and Tissue-like Contraction in Clubfoot-Derived Cells: A Way to Improve Conservative Treatment of Relapsed Clubfoot?. Connect. Tissue Res. 2021, 62 (5), 554–569. 10.1080/03008207.2020.1816992. PubMed DOI
Lareu R. R.; Subramhanya K. H.; Peng Y.; Benny P.; Chen C.; Wang Z.; Rajagopalan R.; Raghunath M. Collagen Matrix Deposition Is Dramatically Enhanced in Vitro When Crowded with Charged Macromolecules: The Biological Relevance of the Excluded Volume Effect. FEBS Lett. 2007, 581 (14), 2709–2714. 10.1016/j.febslet.2007.05.020. PubMed DOI
Benny P.; Raghunath M. Making Microenvironments: A Look into Incorporating Macromolecular Crowding into in Vitro Experiments, to Generate Biomimetic Microenvironments Which Are Capable of Directing Cell Function for Tissue Engineering Applications. J. Tissue Eng. 2017, 8, 204173141773046710.1177/2041731417730467. PubMed DOI PMC
Tsiapalis D.; Zeugolis D. I. It Is Time to Crowd Your Cell Culture Media – Physicochemical Considerations with Biological Consequences. Biomaterials 2021, 275, 12094310.1016/j.biomaterials.2021.120943. PubMed DOI
Bateman J. F.; Cole W. G.; Pillow J. J.; Ramshaw J. A. Induction of Procollagen Processing in Fibroblast Cultures by Neutral Polymers. J. Biol. Chem. 1986, 261 (9), 4198–4203. 10.1016/S0021-9258(17)35645-4. PubMed DOI
Hojima Y.; Behta B.; Romanic A. M.; Prockop D. J. Cleavage of Type I Procollagen by C- and N-Proteinases Is More Rapid If the Substrate Is Aggregated with Dextran Sulfate or Polyethylene Glycol. Anal. Biochem. 1994, 223 (2), 173–180. 10.1006/abio.1994.1569. PubMed DOI
Lareu R. R.; Arsianti I.; Subramhanya H.; Yanxian P.; Raghunath M. In Vitro Enhancement of Collagen Matrix Formation and Crosslinking for Applications in Tissue Engineering: A Preliminary Study. Tissue Eng. 2007, 13, 385–391. 10.1089/ten.2006.0224. PubMed DOI
Chen C.; Peng Y.; Wang Z.; Fish P.; Kaar J.; Koepsel R.; Russell A.; Lareu R.; Raghunath M. The Scar-in-a-Jar: Studying Potential Antifibrotic Compounds from the Epigenetic to Extracellular Level in a Single Well. Br. J. Pharmacol. 2009, 158 (5), 1196–1209. 10.1111/j.1476-5381.2009.00387.x. PubMed DOI PMC
Zeiger A. S.; Loe F. C.; Li R.; Raghunath M.; Vliet K. J. V. Macromolecular Crowding Directs Extracellular Matrix Organization and Mesenchymal Stem Cell Behavior. PLoS One 2012, 7 (5), e3790410.1371/journal.pone.0037904. PubMed DOI PMC
Kumar P.; Satyam A.; Fan X.; Collin E.; Rochev Y.; Rodriguez B. J.; Gorelov A.; Dillon S.; Joshi L.; Raghunath M.; Pandit A.; Zeugolis D. I. Macromolecularly Crowded in Vitro Microenvironments Accelerate the Production of Extracellular Matrix-Rich Supramolecular Assemblies. Sci. Rep. 2015, 5 (1), 872910.1038/srep08729. PubMed DOI PMC
Good R. B.; Eley J. D.; Gower E.; Butt G.; Blanchard A. D.; Fisher A. J.; Nanthakumar C. B. A High Content, Phenotypic ‘Scar-in-a-Jar’ Assay for Rapid Quantification of Collagen Fibrillogenesis Using Disease-Derived Pulmonary Fibroblasts. BMC Biomed. Eng. 2019, 1 (1), 14.10.1186/s42490-019-0014-z. PubMed DOI PMC
Puerta Cavanzo N.; Bigaeva E.; Boersema M.; Olinga P.; Bank R. Macromolecular Crowding as a Tool to Screen Anti-Fibrotic Drugs: The Scar-in-a-Jar System Revisited. Front. Med. 2021, 7, 61577410.3389/fmed.2020.615774. PubMed DOI PMC
Coentro J. Q.; di Nubila A.; May U.; Prince S.; Zwaagstra J.; Järvinen T. A. H.; Zeugolis D. I. Dual Drug Delivery Collagen Vehicles for Modulation of Skin Fibrosis in Vitro. Biomed. Mater. 2022, 17 (2), 02501710.1088/1748-605X/ac5673. PubMed DOI
Rosell-Garcia T.; Rodriguez-Pascual F. Enhancement of Collagen Deposition and Cross-Linking by Coupling Lysyl Oxidase with Bone Morphogenetic Protein-1 and Its Application in Tissue Engineering. Sci. Rep. 2018, 8, 1078010.1038/s41598-018-29236-6. PubMed DOI PMC
Juhl P.; Bondesen S.; Hawkins C. L.; Karsdal M. A.; Bay-Jensen A.-C.; Davies M. J.; Siebuhr A. S. Dermal Fibroblasts Have Different Extracellular Matrix Profiles Induced by TGF-β, PDGF and IL-6 in a Model for Skin Fibrosis. Sci. Rep. 2020, 10 (1), 1730010.1038/s41598-020-74179-6. PubMed DOI PMC
Rønnow S. R.; Dabbagh R. Q.; Genovese F.; Nanthakumar C. B.; Barrett V. J.; Good R. B.; Brockbank S.; Cruwys S.; Jessen H.; Sorensen G. L.; Karsdal M. A.; Leeming D. J.; Sand J. M. B. Prolonged Scar-in-a-Jar: An in Vitro Screening Tool for Anti-Fibrotic Therapies Using Biomarkers of Extracellular Matrix Synthesis. Respir. Res. 2020, 21 (1), 10810.1186/s12931-020-01369-1. PubMed DOI PMC
Rashid R.; Lim N.; Chee S.; Png S.; Wohland T.; Raghunath M.. Novel Use for Polyvinylpyrrolidone as a Macromolecular Crowder for Enhanced Extracellular Matrix Deposition and Cell Proliferation. Tissue Eng., Part C 2014, 20994.10.1089/ten.tec.2013.0733. PubMed DOI PMC
Cigognini D.; Gaspar D.; Kumar P.; Satyam A.; Alagesan S.; Sanz-Nogués C.; Griffin M.; O’Brien T.; Pandit A.; Zeugolis D. I. Macromolecular Crowding Meets Oxygen Tension in Human Mesenchymal Stem Cell Culture - A Step Closer to Physiologically Relevant in Vitro Organogenesis. Sci. Rep. 2016, 6 (1), 3074610.1038/srep30746. PubMed DOI PMC
Graceffa V.; Zeugolis D. Carrageenan Enhances Chondrogenesis and Osteogenesis in Human Bone Marrow Stem Cell Culture. Eur. Cell Mater. 2019, 37, 310–332. 10.22203/eCM.v037a19. PubMed DOI
De Pieri A.; Korntner S. H.; Capella-Monsonis H.; Tsiapalis D.; Kostjuk S. V.; Churbanov S.; Timashev P.; Gorelov A.; Rochev Y.; Zeugolis D. I. Macromolecular Crowding Transforms Regenerative Medicine by Enabling the Accelerated Development of Functional and Truly Three-Dimensional Cell Assembled Micro Tissues. Biomaterials 2022, 287, 12167410.1016/j.biomaterials.2022.121674. PubMed DOI
Graham J.; Raghunath M.; Vogel V. Fibrillar Fibronectin Plays a Key Role as Nucleator of Collagen I Polymerization during Macromolecular Crowding-Enhanced Matrix Assembly. Biomater. Sci. 2019, 7 (11), 4519–4535. 10.1039/C9BM00868C. PubMed DOI PMC
Wong C.-W.; LeGrand C. F.; Kinnear B. F.; Sobota R. M.; Ramalingam R.; Dye D. E.; Raghunath M.; Lane E. B.; Coombe D. R. In Vitro Expansion of Keratinocytes on Human Dermal Fibroblast-Derived Matrix Retains Their Stem-Like Characteristics. Sci. Rep. 2019, 9 (1), 1856110.1038/s41598-019-54793-9. PubMed DOI PMC
Coentro J. Q.; May U.; Prince S.; Zwaagstra J.; Ritvos O.; Järvinen T. A. H.; Zeugolis D. I. Adapting the Scar-in-a-Jar to Skin Fibrosis and Screening Traditional and Contemporary Anti-Fibrotic Therapies. Front. Bioeng. Biotechnol. 2021, 9, 75639910.3389/fbioe.2021.756399. PubMed DOI PMC
Satyam A.; Kumar P.; Fan X.; Gorelov A.; Rochev Y.; Joshi L.; Peinado H.; Lyden D.; Thomas B.; Rodriguez B.; Raghunath M.; Pandit A.; Zeugolis D. Macromolecular Crowding Meets Tissue Engineering by Self-Assembly: A Paradigm Shift in Regenerative Medicine. Adv. Mater. 2014, 26 (19), 3024–3034. 10.1002/adma.201304428. PubMed DOI
Tsiapalis D.; Kearns S.; Kelly J. L.; Zeugolis D. I. Growth Factor and Macromolecular Crowding Supplementation in Human Tenocyte Culture. Biomater. Biosyst. 2021, 1, 10000910.1016/j.bbiosy.2021.100009. PubMed DOI PMC
Alvarado D. M.; McCall K.; Aferol H.; Silva M. J.; Garbow J. R.; Spees W. M.; Patel T.; Siegel M.; Dobbs M. B.; Gurnett C. A. Pitx1 Haploinsufficiency Causes Clubfoot in Humans and a Clubfoot-like Phenotype in Mice. Hum. Mol. Genet. 2011, 20 (20), 3943–3952. 10.1093/hmg/ddr313. PubMed DOI PMC
Collinson J. M.; Lindström N. O.; Neves C.; Wallace K.; Meharg C.; Charles R. H.; Ross Z. K.; Fraser A. M.; Mbogo I.; Oras K.; Nakamoto M.; Barker S.; Duce S.; Miedzybrodzka Z.; Vargesson N. The Developmental and Genetic Basis of ‘Clubfoot’ in the Peroneal Muscular Atrophy Mutant Mouse. Development 2018, 145 (3), dev16009310.1242/dev.160093. PubMed DOI PMC
Zuurmond A.; Vanderslotverhoeven A.; Vandura E.; Degroot J.; Bank R. Minoxidil Exerts Different Inhibitory Effects on Gene Expression of Lysyl Hydroxylase 1, 2, and 3: Implications for Collagen Cross-Linking and Treatment of Fibrosis. Matrix Biol. 2005, 24 (4), 261–270. 10.1016/j.matbio.2005.04.002. PubMed DOI
Bailey A. J.; Bazin S.; Sims T. J.; Le Lous M.; Nicoletis C.; Delaunay A. Characterization of the Collagen of Human Hypertrophic and Normal Scars. Biochim. Biophys. Acta, Protein Struct. 1975, 405 (2), 412–421. 10.1016/0005-2795(75)90106-3. PubMed DOI
van der Slot A. J.; Zuurmond A.-M.; van den Bogaerdt A. J.; Ulrich M. M. W.; Middelkoop E.; Boers W.; Karel Ronday H.; DeGroot J.; Huizinga T. W. J.; Bank R. A. Increased Formation of Pyridinoline Cross-Links Due to Higher Telopeptide Lysyl Hydroxylase Levels Is a General Fibrotic Phenomenon. Matrix Biol. 2004, 23 (4), 251–257. 10.1016/j.matbio.2004.06.001. PubMed DOI
van der Slot-Verhoeven A. J.; van Dura E. A.; Attema J.; Blauw B.; DeGroot J.; Huizinga T. W. J.; Zuurmond A.-M.; Bank R. A. The Type of Collagen Cross-Link Determines the Reversibility of Experimental Skin Fibrosis. Biochim. Biophys. Acta, Mol. Basis Dis. 2005, 1740 (1), 60–67. 10.1016/j.bbadis.2005.02.007. PubMed DOI
Piersma B.; Bank R. A. Collagen Cross-Linking Mediated by Lysyl Hydroxylase 2: An Enzymatic Battlefield to Combat Fibrosis. Essays Biochem. 2019, 63 (3), 377–387. 10.1042/EBC20180051. PubMed DOI
Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; Tinevez J.-Y.; White D. J.; Hartenstein V.; Eliceiri K.; Tomancak P.; Cardona A. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Schmidt U.; Weigert M.; Broaddus C.; Myers G.. Cell Detection with Star-Convex Polygons. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018; Frangi A. F.; Schnabel J. A.; Davatzikos C.; Alberola-López C.; Fichtinger G., Eds.; Springer International Publishing: Cham, 2018; pp 265–27310.1007/978-3-030-00934-2_30. DOI
Lareu R. R.; Zeugolis D. I.; Abu-Rub M.; Pandit A.; Raghunath M. Essential Modification of the Sircol Collagen Assay for the Accurate Quantification of Collagen Content in Complex Protein Solutions. Acta Biomater. 2010, 6 (8), 3146–3151. 10.1016/j.actbio.2010.02.004. PubMed DOI
Methods in Molecular Medicine, Vol. 101: Cartilage and Osteoarthritis, Vol. 2: Structure and In Vivo Analysis; De Ceuninck F.; Sabatini M.; Pastoureau P., Eds.; Methods in Molecular Medicine; Humana Press, 2004.
Chen C.; Loe F.; Blocki A.; Peng Y.; Raghunath M. Applying Macromolecular Crowding to Enhance Extracellular Matrix Deposition and Its Remodeling in Vitro for Tissue Engineering and Cell-Based Therapies. Adv. Drug Delivery Rev. 2011, 63 (4–5), 277–290. 10.1016/j.addr.2011.03.003. PubMed DOI
Green N. H.; Delaine-Smith R. M.; Askew H. J.; Byers R.; Reilly G. C.; Matcher S. J. A New Mode of Contrast in Biological Second Harmonic Generation Microscopy. Sci. Rep. 2017, 7, 1333110.1038/s41598-017-13752-y. PubMed DOI PMC
Shao S.; Zhang X.; Duan L.; Fang H.; Rao S.; Liu W.; Guo B.; Zhang X. Lysyl Hydroxylase Inhibition by Minoxidil Blocks Collagen Deposition and Prevents Pulmonary Fibrosis via TGF-β1/Smad3 Signaling Pathway. Med. Sci. Monit. 2018, 24, 8592–8601. 10.12659/MSM.910761. PubMed DOI PMC
Capella-Monsonís H.; Coentro J. Q.; Graceffa V.; Wu Z.; Zeugolis D. I. An Experimental Toolbox for Characterization of Mammalian Collagen Type I in Biological Specimens. Nat. Protoc. 2018, 13 (3), 507–529. 10.1038/nprot.2017.117. PubMed DOI
Kumar P.; Satyam A.; Gaspar D.; Cigognini D.; Sanz-Nogués C.; O’Brien T.; Pandit A.; Zeugolis D. Macromolecular Crowding: The Next Frontier in Tissue Engineering. Adv. Sci. Technol. 2014, 96, 1–8. 10.4028/www.scientific.net/AST.96.1. DOI
Louisthelmy R.; Burke B. M.; Cornelison R. C. Brain Cancer Cell-Derived Matrices and Effects on Astrocyte Migration. Cells Tissues Organs 2023, 212 (1), 21–31. 10.1159/000522609. PubMed DOI PMC
Ellis R. J. Macromolecular Crowding: Obvious but Underappreciated. Trends Biochem. Sci. 2001, 26 (10), 597–604. 10.1016/S0968-0004(01)01938-7. PubMed DOI
Armstrong J. K.; Wenby R. B.; Meiselman H. J.; Fisher T. C. The Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell Aggregation. Biophys. J. 2004, 87 (6), 4259–4270. 10.1529/biophysj.104.047746. PubMed DOI PMC
Dewavrin J.-Y.; Abdurrahiem M.; Blocki A.; Musib M.; Piazza F.; Raghunath M. Synergistic Rate Boosting of Collagen Fibrillogenesis in Heterogeneous Mixtures of Crowding Agents. J. Phys. Chem. B 2015, 119 (12), 4350–4358. 10.1021/jp5077559. PubMed DOI
Giannandrea M.; Parks W. C. Diverse Functions of Matrix Metalloproteinases during Fibrosis. Dis. Model. Mech. 2014, 7 (2), 193–203. 10.1242/dmm.012062. PubMed DOI PMC
Gupta A. K.; Talukder M.; Venkataraman M.; Bamimore M. A. Minoxidil: A Comprehensive Review. J. Dermatol. Treat. 2022, 33 (4), 1896–1906. 10.1080/09546634.2021.1945527. PubMed DOI
Pinnell S. R.; Murad S. Effects of Minoxidil on Cultured Human Skin Fibroblasts. Dermatology 1987, 175 (Suppl 2), 12–18. 10.1159/000248891. PubMed DOI
Priestley G. C.; Lord R.; Stavropoulos P. The Metabolism of Fibroblasts from Normal and Fibrotic Skin Is Inhibited by Minoxidil in Vitro. Br. J. Dermatol. 1991, 125 (3), 217–221. 10.1111/j.1365-2133.1991.tb14743.x. PubMed DOI
Sarkovich S.; Issa P. P.; Longanecker A.; Martin D.; Redondo K.; McTernan P.; Simkin J.; Marrero L. Minoxidil Weakens Newly Synthesized Collagen in Fibrotic Synoviocytes from Osteoarthritis Patients. J. Exp. Orthop. 2023, 10 (1), 8410.1186/s40634-023-00650-8. PubMed DOI PMC
Murad S.; Pinnell S. R. Suppression of Fibroblast Proliferation and Lysyl Hydroxylase Activity by Minoxidil. J. Biol. Chem. 1987, 262 (25), 11973–11978. 10.1016/S0021-9258(18)45304-5. PubMed DOI
Devkota A. K.; Veloria J. R.; Guo H. F.; Kurie J. M.; Cho E. J.; Dalby K. N. Development of a High-Throughput Lysyl Hydroxylase (LH) Assay and Identification of Small-Molecule Inhibitors against LH2. SLAS Discovery 2019, 24 (4), 484–491. 10.1177/2472555218817057. PubMed DOI PMC
Maghsoud Y.; Vázquez-Montelongo E. A.; Yang X.; Liu C.; Jing Z.; Lee J.; Harger M.; Smith A. K.; Espinoza M.; Guo H.-F.; Kurie J. M.; Dalby K. N.; Ren P.; Cisneros G. A. Computational Investigation of a Series of Small Molecules as Potential Compounds for Lysyl Hydroxylase-2 (LH2) Inhibition. J. Chem. Inf. Model. 2023, 63 (3), 986–1001. 10.1021/acs.jcim.2c01448. PubMed DOI PMC