The Effects of In Vivo Exposure to Copper Oxide Nanoparticles on the Gut Microbiome, Host Immunity, and Susceptibility to a Bacterial Infection in Earthworms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
671881
Horizon 2020
PubMed
32659907
PubMed Central
PMC7408611
DOI
10.3390/nano10071337
PII: nano10071337
Knihovny.cz E-zdroje
- Klíčová slova
- Eisenia fetida, copper, earthworms, infection, innate immunity, microbiome, nanomaterials, nanoparticles, survival,
- Publikační typ
- časopisecké články MeSH
Nanomaterials (NMs) can interact with the innate immunity of organisms. It remains, however, unclear whether these interactions can compromise the immune functioning of the host when faced with a disease threat. Co-exposure with pathogens is thus a powerful approach to assess the immuno-safety of NMs. In this paper, we studied the impacts of in vivo exposure to a biocidal NM on the gut microbiome, host immune responses, and susceptibility of the host to a bacterial challenge in an earthworm. Eisenia fetida were exposed to CuO-nanoparticles in soil for 28 days, after which the earthworms were challenged with the soil bacterium Bacillus subtilis. Immune responses were monitored by measuring mRNA levels of known earthworm immune genes. Effects of treatments on the gut microbiome were also assessed to link microbiome changes to immune responses. Treatments caused a shift in the earthworm gut microbiome. Despite these effects, no impacts of treatment on the expression of earthworm immune markers were recorded. The methodological approach applied in this paper provides a useful framework for improved assessment of immuno-safety of NMs. In addition, we highlight the need to investigate time as a factor in earthworm immune responses to NM exposure.
School of Biosciences Cardiff University Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX UK
UK Centre for Ecology and Hydrology Maclean Building Benson Lane Wallingford OX10 8BB UK
Zobrazit více v PubMed
Sun T.Y., Bornhöft N.A., Hungerbühler K., Nowack B. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Environ. Sci. Technol. 2016;50:4701–4711. doi: 10.1021/acs.est.5b05828. PubMed DOI
Keller A.A., McFerran S., Lazareva A., Suh S. Glob al life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013;15 doi: 10.1007/s11051-013-1692-4. DOI
Colvin V.L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003;21:1166–1170. doi: 10.1038/nbt875. PubMed DOI
Moore M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006;32:967–976. doi: 10.1016/j.envint.2006.06.014. PubMed DOI
Handy R.D., Owen R., Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology. 2008;17:315–325. doi: 10.1007/s10646-008-0206-0. PubMed DOI
Dobrovolskaia M.A., McNeil S.E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007;2:469–478. doi: 10.1038/nnano.2007.223. PubMed DOI
Boraschi D., Oostingh G.J., Casals E., Italiani P., Nelissen I., Puntes V.F., Duschl A. Nano-immunosafety: Issues in assay validation. J. Phys. Conf. Ser. 2011;304:012077. doi: 10.1088/1742-6596/304/1/012077. DOI
Boraschi D., Alijagic A., Auguste M., Barbero F., Ferrari E., Hernadi S., Mayall C., Michelini S., Navarro Pacheco N.I., Prinelli A., et al. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small. 2020;16 doi: 10.1002/smll.202000598. PubMed DOI
Fadeel B. Hide and seek: Nanomaterial interactions with the immune system. Front. Immunol. 2019;10:133. doi: 10.3389/fimmu.2019.00133. PubMed DOI PMC
Boraschi D., Italiani P., Palomba R., Decuzzi P., Duschl A., Fadeel B., Moghimi S.M. Nanoparticles and innate immunity: New perspectives on host defence. Semin. Immunol. 2017;34:33–51. doi: 10.1016/j.smim.2017.08.013. PubMed DOI
Pallardy M.J., Turbica I., Biola-Vidamment A. Why the immune system should be concerned by nanomaterials? Front. Immunol. 2017;8:544. doi: 10.3389/fimmu.2017.00544. PubMed DOI PMC
Alsaleh N.B., Brown J.M. Immune responses to engineered nanomaterials: Current understanding and challenges. Curr. Opin. Toxicol. 2018;10:8–14. doi: 10.1016/j.cotox.2017.11.011. PubMed DOI PMC
Bhattacharya K., Kiliç G., Costa P.M., Fadeel B. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology. 2017;11:809–826. doi: 10.1080/17435390.2017.1363309. PubMed DOI
Simonin M., Richaume A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: A review. Environ. Sci. Pollut. Res. 2015;22:13710–13723. doi: 10.1007/s11356-015-4171-x. PubMed DOI
McKee M.S., Filser J. Impacts of metal-based engineered nanomaterials on soil communities. Environ. Sci. Nano. 2016;3:506. doi: 10.1039/C6EN00007J. DOI
Courtois P., Rorat A., Lemiere S., Guyoneaud R., Attard E., Levard C., Vandenbulcke F. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. Environ. Pollut. 2019;253:578–598. doi: 10.1016/j.envpol.2019.07.053. PubMed DOI
Judy J.D., McNear D.H., Chen C., Lewis R.W., Tsyusko O.V., Bertsch P.M., Rao W., Stegemeier J., Lowry G.V., McGrath S.P., et al. Nanomaterials in Biosolids Inhibit Nodulation, Shift Microbial Community Composition, and Result in Increased Metal Uptake Relative to Bulk/Dissolved Metals. Environ. Sci. Technol. 2015;49:8751–8758. doi: 10.1021/acs.est.5b01208. PubMed DOI
Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013;14:676–684. doi: 10.1038/ni.2640. PubMed DOI PMC
Buffie C.G., Pamer E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013;13:790–801. doi: 10.1038/nri3535. PubMed DOI PMC
Nyholm S.V., Graf J. Knowing your friends: Invertebrate innate immunity fosters beneficial bacterial symbioses. Nat. Rev. Microbiol. 2012;10:815–827. doi: 10.1038/nrmicro2894. PubMed DOI PMC
Koch H., Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. USA. 2011;108:19288–19292. doi: 10.1073/pnas.1110474108. PubMed DOI PMC
Dillon R.J., Vennard C.T., Buckling A., Charnley A.K. Diversity of locust gut bacteria protects against pathogen invasion. Ecol. Lett. 2005;8:1291–1298. doi: 10.1111/j.1461-0248.2005.00828.x. DOI
Cirimotich C.M., Dong Y., Clayton A.M., Sandiford S.L., Souza-Neto J., Mulenga M., Dimopoulos G. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332:855–858. doi: 10.1126/science.1201618. PubMed DOI PMC
Kwong W.K., Mancenido A.L., Moran N.A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 2017;4:1–9. doi: 10.1098/rsos.170003. PubMed DOI PMC
Weiss B.L., Maltz M., Aksoy S. Obligate symbionts activate immune system development in the tsetse fly. J. Immunol. 2012;188:3395–3403. doi: 10.4049/jimmunol.1103691. PubMed DOI PMC
Motta E.V.S., Raymann K., Moran N.A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA. 2018;115:10305–10310. doi: 10.1073/pnas.1803880115. PubMed DOI PMC
Kim J.K., Lee J.B., Huh Y.R., Jang H.A., Kim C.H., Yoo J.W., Lee B.L. Burkholderia gut symbionts enhance the innate immunity of host Riptortus pedestris. Dev. Comp. Immunol. 2015;53:265–269. doi: 10.1016/j.dci.2015.07.006. PubMed DOI
Chen H., Zhao R., Wang B., Cai C., Zheng L., Wang H., Wang M., Ouyang H., Zhou X., Chai Z., et al. The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact. 2017;8:80–88. doi: 10.1016/j.impact.2017.07.005. DOI
Williams K., Milner J., Boudreau M.D., Gokulan K., Cerniglia C.E., Khare S. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology. 2015;9:279–289. doi: 10.3109/17435390.2014.921346. PubMed DOI
Auguste M., Balbi T., Montagna M., Fabbri R., Sendra M., Blasco J., Canesi L. In vivo immunomodulatory and antioxidant properties of nanoceria (nCeO2) in the marine mussel Mytilus galloprovincialis. Comp. Biochem. Physiol. Part—C Toxicol. Pharmacol. 2019;219:95–102. doi: 10.1016/j.cbpc.2019.02.006. PubMed DOI
Auguste M., Lasa A., Pallavicini A., Gualdi S., Vezzulli L., Canesi L. Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci. Total Environ. 2019;670:129–137. doi: 10.1016/j.scitotenv.2019.03.133. PubMed DOI
Alijagic A., Pinsino A. Probing safety of nanoparticles by outlining sea urchin sensing and signaling cascades. Ecotoxicol. Environ. Saf. 2017;144:416–421. doi: 10.1016/j.ecoenv.2017.06.060. PubMed DOI
Hayashi Y., Heckmann L.H., Simonsen V., Scott-Fordsmand J.J. Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 2013;98:219–226. doi: 10.1016/j.ecoenv.2013.08.017. PubMed DOI
Edwards C.A., Bohlen P.J. Biology and Ecology of Earthworms. Chapman & Hall; London, UK: 1996. The role of earthworms in organic matter and nutrient cycles; pp. 155–180.
Beschin A., Bilej M., Hanssens F., Raymakers J., Van Dyck E., Revets H., Brys L., Gomez J., De Baetselier P., Timmermans M. Identification and Cloning of a Glucan- and Lipopolysaccharide-binding Protein from Eisenia foetida Earthworm Involved in the Activation of Prophenoloxidase Cascade. J. Biol. Chem. 1998;273:24948–24954. doi: 10.1074/jbc.273.38.24948. PubMed DOI
Bilej M., De Baetselier P., Van Dijck E., Stijlemans B., Colige A., Beschin A. Distinct Carbohydrate Recognition Domains of an Invertebrate Defense Molecule Recognize Gram-negative and Gram-positive Bacteria. J. Biol. Chem. 2001;276:45840–45847. doi: 10.1074/jbc.M107220200. PubMed DOI
Šilerová M., Procházková P., Josková R., Josens G., Beschin A., De Baetselier P., Bilej M. Comparative study of the CCF-like pattern recognition protein in different Lumbricid species. Dev. Comp. Immunol. 2006;30:765–771. doi: 10.1016/j.dci.2005.11.002. PubMed DOI
Josková R., Šilerová M., Procházková P., Bilej M. Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei. Dev. Comp. Immunol. 2009;33:932–938. doi: 10.1016/j.dci.2009.03.002. PubMed DOI
Sekizawa Y., Hagiwara K., Nakajima T., Kobayashi H. A novel protein, lysenin, that causes contraction of the isolated rat aorta: Its purification from the coelomic fluid of the earthworm Eisenia foetida. Biomed. Res. 1996;17:197–203. doi: 10.2220/biomedres.17.197. DOI
Lassegues M., Milochau A., Doignon F., Du Pasquier L., Valembois P. Sequence and expression of an Eisenia-fetida-derived cDNA clone that encodes the 40-kDa fetidin antibacterial protein. Eur. J. Biochem. 1997;246:756–762. doi: 10.1111/j.1432-1033.1997.00756.x. PubMed DOI
Cooper E.L., Roch P. Earthworm immunity: A model of immune competence. Pedobiologia. 2003;47:676–688. doi: 10.1078/0031-4056-00245. DOI
Bruhn H., Winkelmann J., Andersen C., Andrä J., Leippe M. Dissection of the mechanisms of cytolytic and antibacterial activity of lysenin, a defence protein of the annelid Eisenia fetida. Dev. Comp. Immunol. 2006;30:597–606. doi: 10.1016/j.dci.2005.09.002. PubMed DOI
Dvořák J., Mančíková V., Pižl V., Elhottová D., Šilerová M., Roubalová R., Škanta F., Procházková P., Bilej M. Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida. PLoS ONE. 2013;8:e0079257. doi: 10.1371/journal.pone.0079257. PubMed DOI PMC
Dvořák J., Roubalová R., Procházková P., Rossmann P., Škanta F., Bilej M. Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. Dev. Comp. Immunol. 2016;57:67–74. doi: 10.1016/j.dci.2015.12.001. PubMed DOI
Hayashi Y., Engelmann P., Foldbjerg R., Szabó M., Somogyi I., Pollák E., Molnár L., Autrup H., Sutherland D.S., Scott-Fordsmand J., et al. Earthworms and humans in vitro: Characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ. Sci. Technol. 2012;46:4166–4173. doi: 10.1021/es3000905. PubMed DOI
Hayashi Y., Miclaus T., Engelmann P., Autrup H., Sutherland D.S., Scott-Fordsmand J.J. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona. Nanotoxicology. 2016;10:303–311. doi: 10.3109/17435390.2015.1054909. PubMed DOI
Zeibich L., Schmidt O., Drake H.L. Fermenters in the earthworm gut: Do transients matter? FEMS Microbiol. Ecol. 2019;95:1–12. doi: 10.1093/femsec/fiy221. PubMed DOI
Singleton D.R., Hendrix P.F., Coleman D.C., Whitman W.B. Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta) Soil Biol. Biochem. 2003;35:1547–1555. doi: 10.1016/S0038-0717(03)00244-X. DOI
Thakuria D., Schmidt O., Finan D., Egan D., Doohan F.M. Gut wall bacteria of earthworms: A natural selection process. ISME J. 2010;4:357–366. doi: 10.1038/ismej.2009.124. PubMed DOI
Swart E., Newbold L., Kille P., Spurgeon D., Svendsen C. The midgut of the earthworm Eisenia fetida harbours a resident host specific bacterial community independent from soil. Environ. Microbiol. under review.
Lund M.B., Holmstrup M., Lomstein B.A., Damgaard C., Schramm A. Beneficial effect of verminephrobacter nephridial symbionts on the fitness of the earthworm aporrectodea tuberculata. Appl. Environ. Microbiol. 2010;76:4738–4743. doi: 10.1128/AEM.00108-10. PubMed DOI PMC
Viana F., Paz L.C., Methling K., Damgaard C.F., Lalk M., Schramm A., Lund M.B. Distinct effects of the nephridial symbionts Verminephrobacter and Candidatus Nephrothrix on reproduction and maturation of its earthworm host Eisenia andrei. FEMS Microbiol. Ecol. 2018;94:1–7. doi: 10.1093/femsec/fix178. PubMed DOI
Šrut M., Menke S., Höckner M., Sommer S. Earthworms and cadmium—Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicol. Environ. Saf. 2019;171:843–853. doi: 10.1016/j.ecoenv.2018.12.102. PubMed DOI
Yausheva E., Sizova E., Lebedev S., Skalny A., Miroshnikov S., Plotnikov A., Khlopko Y., Gogoleva N., Cherkasov S. Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora. Environ. Sci. Pollut. Res. 2016;23:13245–13254. doi: 10.1007/s11356-016-6474-y. PubMed DOI
Ma L., Xie Y., Han Z., Giesy J.P., Zhang X. Responses of earthworms and microbial communities in their guts to Triclosan. Chemosphere. 2017;168:1194–1202. doi: 10.1016/j.chemosphere.2016.10.079. PubMed DOI
Swart E., Goodall T., Kille P., Spurgeon D., Svendsen C. The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles. Environ. Pollut. accepted. PubMed
Pass D.A., Morgan A.J., Read D.S., Field D., Weightman A.J., Kille P. The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environ. Microbiol. 2015;17:1884–1896. doi: 10.1111/1462-2920.12712. PubMed DOI
Ma J., Chen Q.-L., O’Connor P., Sheng G.D. Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? Environ. Pollut. 2019:113463. doi: 10.1016/j.envpol.2019.113463. PubMed DOI
Zhu D., Zheng F., Chen Q.-L., Yang X.-R., Christie P., Ke X., Zhu Y.-G. Exposure of a soil collembolan to Ag nanoparticles and AgNO3 disturbs its associated microbiota and lowers the incidence of antibiotic resistance genes in the gut. Environ. Sci. Technol. 2018;52:12748–12756. doi: 10.1021/acs.est.8b02825. PubMed DOI
Ma J., Sheng G.D., Chen Q.L., O’Connor P. Do combined nanoscale polystyrene and tetracycline impact on the incidence of resistance genes and microbial community disturbance in Enchytraeus crypticus? J. Hazard. Mater. 2020;387:122012. doi: 10.1016/j.jhazmat.2019.122012. PubMed DOI
Keller A.A., Adeleye A.S., Conway J.R., Garner K.L., Zhao L., Cherr G.N., Hong J., Gardea-Torresdey J.L., Godwin H.A., Hanna S., et al. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact. 2017;7:28–40. doi: 10.1016/j.impact.2017.05.003. DOI
Mincarelli L., Tiano L., Craft J., Marcheggiani F., Vischetti C. Evaluation of gene expression of different molecular biomarkers of stress response as an effect of copper exposure on the earthworm Eisenia Andrei. Ecotoxicology. 2019;28:938–948. doi: 10.1007/s10646-019-02093-3. PubMed DOI
Smit C.E., Van Gestel C.A.M. Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ. Toxicol. Chem. 1998;17:1132–1141. doi: 10.1002/etc.5620170621. DOI
Waalewijn-Kool P.L., Ortiz M.D., Van Gestel C.A.M. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil. Ecotoxicology. 2012;21:1797–1804. doi: 10.1007/s10646-012-0914-3. PubMed DOI PMC
Kiernan J.A. Histological and Histochemical Methods: Theory and Practice. 4th ed. Scion Publishing Ltd.; Banbury, UK: 2008.
Gibson-Corley K.N., Olivier A.K., Meyerholz D.K. Principles for Valid Histopathologic Scoring in Research. Vet. Pathol. 2013;50:1007–1015. doi: 10.1177/0300985813485099. PubMed DOI PMC
Novo M., Almodóvar A., Fernández R., Trigo D., Díaz Cosín D.J. Cryptic speciation of hormogastrid earthworms revealed by mitochondrial and nuclear data. Mol. Phylogenet. Evol. 2010;56:507–512. doi: 10.1016/j.ympev.2010.04.010. PubMed DOI
King R.A., Tibble A.L., Symondson W.O.C. Opening a can of worms: Unprecedented sympatric cryptic diversity within British lumbricid earthworms. Mol. Ecol. 2008;17:4684–4698. doi: 10.1111/j.1365-294X.2008.03931.x. PubMed DOI
Anderson C., Cunha L., Sechi P., Kille P., Spurgeon D. Genetic variation in populations of the earthworm, Lumbricus rubellus, across contaminated mine sites. BMC Genet. 2017;18 doi: 10.1186/s12863-017-0557-8. PubMed DOI PMC
Pérez-Losada M., Eiroa J., Mato S., Domínguez J. Phylogenetic species delimitation of the earthworms Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouché, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences. Pedobiologia. 2005;49:317–324. doi: 10.1016/j.pedobi.2005.02.004. DOI
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. doi: 10.1071/ZO9660275. PubMed DOI
Sharma A., Sonah H., Deshmukh R.K., Gupta N.K., Singh N.K., Sharma T.R. Analysis of Genetic Diversity in Earthworms using DNA Markers. Zool. Sci. 2010;28:25. doi: 10.2108/zsj.28.25. PubMed DOI
Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Kozich J.J., Westcott S.L., Baxter N.T., Highlander S.K., Schloss P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Callahan B. Silva taxonomic training data formatted for DADA2 (Silva version 132) [Data set] Zenodo. 2018
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. [(accessed on 25 October 2018)];Vegan: Community Ecology Package. R Package Version 2.5-3. 2018 Available online: https://CRAN.R-project.org/package=vegan.
Procházková P., Hanč A., Dvořák J., Roubalová R., Drešlová M., Částková T., Šustr V., Škanta F., Pacheco N.I.N., Bilej M. Contribution of Eisenia andrei earthworms in pathogen reduction during vermicomposting. Environ. Sci. Pollut. Res. 2018;25:26267–26278. doi: 10.1007/s11356-018-2662-2. PubMed DOI
Hayashi Y., Miclaus T., Scavenius C., Kwiatkowska K., Sobota A., Engelmann P., Scott-Fordsmand J.J., Enghild J.J., Sutherland D.S. Species differences take shape at nanoparticles: Protein corona made of the native repertoire assists cellular interaction. Environ. Sci. Technol. 2013;47:14367–14375. doi: 10.1021/es404132w. PubMed DOI
Bigorgne E., Foucaud L., Caillet C., Giambérini L., Nahmani J., Thomas F., Rodius F. Cellular and molecular responses of E. fetida cœlomocytes exposed to TiO 2 nanoparticles. J. Nanoparticle Res. 2012;14 doi: 10.1007/s11051-012-0959-5. DOI
Patricia C.S., Nerea G.V., Erik U., Elena S.M., Eider B., Darío D.M.W., Manu S. Responses to silver nanoparticles and silver nitrate in a battery of biomarkers measured in coelomocytes and in target tissues of Eisenia fetida earthworms. Ecotoxicol. Environ. Saf. 2017;141:57–63. doi: 10.1016/j.ecoenv.2017.03.008. PubMed DOI
Garcia-Velasco N., Irizar A., Urionabarrenetxea E., Scott-Fordsmand J.J., Soto M. Selection of an optimal culture medium and the most responsive viability assay to assess AgNPs toxicity with primary cultures of Eisenia fetida coelomocytes. Ecotoxicol. Environ. Saf. 2019;183:109545. doi: 10.1016/j.ecoenv.2019.109545. PubMed DOI
Alijagic A., Gaglio D., Napodano E., Russo R., Costa C., Benada O., Kofroňová O., Pinsino A. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. J. Hazard. Mater. 2020;384:121389. doi: 10.1016/j.jhazmat.2019.121389. PubMed DOI
Meier C., Voegelin A., Pradas Del Real A., Sarret G., Mueller C.R., Kaegi R. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration. Environ. Sci. Technol. 2016;50:3503–3510. doi: 10.1021/acs.est.5b04804. PubMed DOI
Sekine R., Marzouk E.R., Khaksar M., Scheckel K.G., Stegemeier J.P., Lowry G.V., Donner E., Lombi E. Aging of dissolved copper and copper-based nanoparticles in five different soils: Short-term kinetics vs. long-term fate. J. Environ. Qual. 2017;46:1198–1205. doi: 10.2134/jeq2016.12.0485. PubMed DOI PMC
Levard C., Hotze E.M., Lowry G.V., Brown G.E. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environ. Sci. Technol. 2012;46:6900–6914. doi: 10.1021/es2037405. PubMed DOI
Baccaro M., Undas A.K., De Vriendt J., Van Den Berg J.H.J., Peters R.J.B., Van Den Brink N.W. Ageing, dissolution and biogenic formation of nanoparticles: How do these factors affect the uptake kinetics of silver nanoparticles in earthworms? Environ. Sci. Nano. 2018;5:1107–1116. doi: 10.1039/C7EN01212H. DOI
Peng C., Duan D., Xu C., Chen Y., Sun L., Zhang H., Yuan X., Zheng L., Yang Y., Yang J., et al. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ. Pollut. 2015;197:99–107. doi: 10.1016/j.envpol.2014.12.008. PubMed DOI
Xiang Q., Zhu D., Chen Q.L., O’Connor P., Yang X.R., Qiao M., Zhu Y.G. Adsorbed Sulfamethoxazole Exacerbates the Effects of Polystyrene (∼2 μm) on Gut Microbiota and the Antibiotic Resistome of a Soil Collembolan. Environ. Sci. Technol. 2019;53:12823–12834. doi: 10.1021/acs.est.9b04795. PubMed DOI
Nechitaylo T.Y., Timmis K.N., Golyshin P.N. “Candidatus Lumbricincola”, a novel lineage of uncultured Mollicutes from earthworms of family Lumbricidae. Environ. Microbiol. 2009;11:1016–1026. doi: 10.1111/j.1462-2920.2008.01837.x. PubMed DOI
Tak E.S., Cho S., Park S.C. Gene expression profiling of coelomic cells and discovery of immune-related genes in the earthworm, Eisenia andrei, using expressed sequence tags. Biosci. Biotechnol. Biochem. 2015;8451:1–7. doi: 10.1080/09168451.2014.988677. PubMed DOI
Opper B., Bognár A., Heidt D., Németh P., Engelmann P. Revising lysenin expression of earthworm coelomocytes. Dev. Comp. Immunol. 2013;39:214–218. doi: 10.1016/j.dci.2012.11.006. PubMed DOI
Adamowicz A. Morphology and ultrastructure of the earthworm Dendrobaena veneta (Lumbricidae) coelomocytes. Tissue Cell. 2005;37:125–133. doi: 10.1016/j.tice.2004.11.002. PubMed DOI
Engelmann P., Cooper E.L., Opper B., Németh P. Earthworm Innate Immune System. In: Karaca A., editor. Biology of Earthworms. Volume 24. Springer; Berlin/Heidelberg, Germany: 2011. pp. 229–245. Soil Biology.
Bodó K., Ernszt D., Németh P., Engelmann P. Distinct immune-and defense-related molecular fingerprints in sepatated coelomocyte subsets of Eisenia andrei earthworms. Invertebr. Surviv. J. 2018;15:338–345.
Irizar A., Rivas C., García-Velasco N., de Cerio F.G., Etxebarria J., Marigómez I., Soto M. Establishment of toxicity thresholds in subpopulations of coelomocytes (amoebocytes vs. eleocytes) of Eisenia fetida exposed in vitro to a variety of metals: Implications for biomarker measurements. Ecotoxicology. 2015;24:1004–1013. doi: 10.1007/s10646-015-1441-9. PubMed DOI
Homa J., Zorska A., Wesolowski D., Chadzinska M. Dermal exposure to immunostimulants induces changes in activity and proliferation of coelomocytes of Eisenia andrei. J. Comp. Physiol. B. 2013:313–322. doi: 10.1007/s00360-012-0710-7. PubMed DOI PMC
Olchawa E., Bzowska M., Stürzenbaum S.R., Morgan A.J., Plytycz B. Heavy metals affect the coelomocyte-bacteria balance in earthworms: Environmental interactions between abiotic and biotic stressors. Environ. Pollut. 2006;142:373–381. doi: 10.1016/j.envpol.2005.09.023. PubMed DOI
Procházková P., Silerová M., Felsberg J., Josková R., Beschin A., De Baetselier P., Bilej M. Relationship between hemolytic molecules in Eisenia fetida earthworms. Dev. Comp. Immunol. 2006;30:381–392. doi: 10.1016/j.dci.2005.06.014. PubMed DOI
Plytycz B., Bigaj J., Osikowski A., Hofman S., Falniowski A., Panz T., Grzmil P., Vandenbulcke F. The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida. PLoS ONE. 2018;13:e0191711. doi: 10.1371/journal.pone.0191711. PubMed DOI PMC
Martinsson S., Erséus C. Hybridisation and species delimitation of Scandinavian Eisenia spp. (Clitellata: Lumbricidae) Eur. J. Soil Biol. 2018;88:41–47. doi: 10.1016/j.ejsobi.2018.06.003. DOI
Römbke J., Aira M., Backeljau T., Breugelmans K., Domínguez J., Funke E., Graf N., Hajibabaei M., Pérez-Losada M., Porto P.G., et al. DNA barcoding of earthworms (Eisenia fetida/andrei complex) from 28 ecotoxicological test laboratories. Appl. Soil Ecol. 2016;104:3–11. doi: 10.1016/j.apsoil.2015.02.010. DOI
Bouché M.B. Lombriciens de France. Ecol. Syst. 1972;72:671.
Domínguez J., Velando A., Ferreiro A. Are Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouche (1972) (Oligochaeta, Lumbricidae) different biological species? Pedobiologia. 2005;49:81–87. doi: 10.1016/j.pedobi.2004.08.005. DOI
Plytycz B., Bigaj J., Panz T., Grzmil P. Asymmetrical hybridization and gene flow between Eisenia andrei and E. fetida lumbricid earthworms. PLoS ONE. 2018;13:e0204469. doi: 10.1371/journal.pone.0204469. PubMed DOI PMC
Goodrich J.K., Davenport E.R., Beaumont M., Bell J.T., Clark A.G., Ley R.E., Goodrich J.K., Davenport E.R., Beaumont M., Jackson M.A., et al. Genetic Determinants of the Gut Microbiome in UK Twins Resource Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe. 2016:731–743. doi: 10.1016/j.chom.2016.04.017. PubMed DOI PMC
Kolde R., Franzosa E.A., Rahnavard G., Hall A.B., Vlamakis H., Stevens C., Daly M.J., Xavier R.J., Huttenhower C. Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Med. 2018;10:1–13. doi: 10.1186/s13073-018-0515-8. PubMed DOI PMC
Buhnik-Rosenblau K., Danin-Poleg Y., Kashi Y. Predominant effect of host genetics on levels of Lactobacillus johnsonii bacteria in the mouse gut. Appl. Environ. Microbiol. 2011;77:6531–6538. doi: 10.1128/AEM.00324-11. PubMed DOI PMC
Macke E., Callens M., De Meester L., Decaestecker E. Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria. Nat. Commun. 2017;8 doi: 10.1038/s41467-017-01714-x. PubMed DOI PMC
Davidson S.K., Davidson S.K., Stahl D.A. Transmission of Nephridial Bacteria of the Earthworm Eisenia fetida. Appl. Environ. Microbiol. 2006;72:769–775. doi: 10.1128/AEM.72.1.769-775.2006. PubMed DOI PMC