Fungus Aspergillus niger Processes Exogenous Zinc Nanoparticles into a Biogenic Oxalate Mineral
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
KEGA 013SPU-4/2019
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 1/0153/17
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 1/0164/17
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 1/0146/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 1/0292/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 1/0463/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
33049947
PubMed Central
PMC7712133
DOI
10.3390/jof6040210
PII: jof6040210
Knihovny.cz E-zdroje
- Klíčová slova
- biomineralization, biotransformation, fungal leaching, metal oxide nanoparticles, nanoparticle dissolution, nanoparticle mobility,
- Publikační typ
- časopisecké články MeSH
Zinc oxide nanoparticles (ZnO NPs) belong to the most widely used nanoparticles in both commercial products and industrial applications. Hence, they are frequently released into the environment. Soil fungi can affect the mobilization of zinc from ZnO NPs in soils, and thus they can heavily influence the mobility and bioavailability of zinc there. Therefore, ubiquitous soil fungus Aspergillus niger was selected as a test organism to evaluate the fungal interaction with ZnO NPs. As anticipated, the A. niger strain significantly affected the stability of particulate forms of ZnO due to the acidification of its environment. The influence of ZnO NPs on fungus was compared to the aqueous Zn cations and to bulk ZnO as well. Bulk ZnO had the least effect on fungal growth, while the response of A. niger to ZnO NPs was comparable with ionic zinc. Our results have shown that soil fungus can efficiently bioaccumulate Zn that was bioextracted from ZnO. Furthermore, it influences Zn bioavailability to plants by ZnO NPs transformation to stable biogenic minerals. Hence, a newly formed biogenic mineral phase of zinc oxalate was identified after the experiment with A. niger strain's extracellular metabolites highlighting the fungal significance in zinc biogeochemistry.
Zobrazit více v PubMed
Hochella M.F., Mogk D.W., Ranville J., Allen I.C., Luther G.W., Marr L.C., McGrail B.P., Murayama M., Qafoku N.P., Rosso K.M., et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science. 2019;363:eaau8299. doi: 10.1126/science.aau8299. PubMed DOI
Sun T.Y., Mitrano D.M., Bornhöft N.A., Scheringer M., Hungerbühler K., Nowack B. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials. Environ. Sci. Technol. 2017;51:2854–2863. doi: 10.1021/acs.est.6b05702. PubMed DOI
Peijnenburg W., Praetorius A., Scott-Fordsmand J., Cornelis G. Fate assessment of engineered nanoparticles in solids dominated media—Current insights and the way forward. Environ. Pollut. 2016;218:1365–1369. doi: 10.1016/j.envpol.2015.11.043. PubMed DOI
Šebesta M., Matúš P. Separation, determination, and characterization of inorganic engineered nanoparticles in complex environmental samples. Chem. List. 2018;112:583–589.
Keller A.A., McFerran S., Lazareva A., Suh S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013;15:1–17. doi: 10.1007/s11051-013-1692-4. DOI
MarketsandMarkets . Zinc Oxide Market by Application & by Region—Global Trends and Forecasts to 2020. MarketsandMarkets™ Research Private Ltd.; Hadapsar, India: 2015.
Future Markets Inc. The Global Market for Zinc Oxide Nanoparticles. Future Markets Inc.; Edinburgh, UK: 2020.
MarketsandMarkets . Zinc Oxide Market by Process (French Process, Wet Process, American Process), Grade (Standard, Treated, USP, FCC), Application (Rubber, Ceramics, Chemicals, Agriculture, Cosmetics & Personal Care, Pharmaceuticals), Region—Global Forecast to 2024. MarketsandMarkets™ Research Private Ltd.; Hadapsar, India: 2019.
Šebesta M., Nemček L., Urík M., Kolenčík M., Bujdoš M., Vávra I., Dobročka E., Matúš P. Partitioning and stability of ionic, nano- and microsized zinc in natural soil suspensions. Sci. Total Environ. 2020;700:134445. doi: 10.1016/j.scitotenv.2019.134445. PubMed DOI
Raliya R., Saharan V., Dimkpa C., Biswas P. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. J. Agric. Food Chem. 2018;66:6487–6503. doi: 10.1021/acs.jafc.7b02178. PubMed DOI
Prasad R., Bhattacharyya A., Nguyen Q.D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017;8:1014. doi: 10.3389/fmicb.2017.01014. PubMed DOI PMC
Medina-Velo I.A., Barrios A.C., Zuverza-Mena N., Hernandez-Viezcas J.A., Chang C.H., Ji Z., Zink J.I., Peralta-Videa J.R., Gardea-Torresdey J.L. Comparison of the effects of commercial coated and uncoated ZnO nanomaterials and Zn compounds in kidney bean (Phaseolus vulgaris) plants. J. Hazard. Mater. 2017;332:214–222. doi: 10.1016/j.jhazmat.2017.03.008. PubMed DOI
Raliya R., Tarafdar J.C., Biswas P. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi. J. Agric. Food Chem. 2016;64:3111–3118. doi: 10.1021/acs.jafc.5b05224. PubMed DOI
Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI
Kabata-Pendias A., Szteke B. Trace Elements in Abiotic and Biotic Environments. CRC Press; Boca Raton, FL, USA: 2015. pp. 355–366.
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica l.) under field conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC
García-Gómez C., Fernández M.D., García S., Obrador A.F., Letón M., Babín M. Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community. Environ. Sci. Pollut. Res. 2018;25:28140–28152. doi: 10.1007/s11356-018-2833-1. PubMed DOI
Šebesta M., Kolenčík M., Matúš P., Kořenková L. Transport and distribution of engineered nanoparticles in soils and sediments. Chem. List. 2017;111:322–328.
Šebesta M., Kolenčík M., Urík M., Bujdoš M., Vávra I., Dobročka E., Smilek J., Kalina M., Diviš P., Pavúk M., et al. Increased Colloidal Stability and Decreased Solubility—Sol-Gel Synthesis of Zinc Oxide Nanoparticles with Humic Acids. J. Nanosci. Nanotechnol. 2019;19:3024–3030. doi: 10.1166/jnn.2019.15868. PubMed DOI
Erazo A., Mosquera S.A., Rodríguez-Paéz J.E. Synthesis of ZnO nanoparticles with different morphology: Study of their antifungal effect on strains of Aspergillus niger and Botrytis cinerea. Mater. Chem. Phys. 2019;234:172–184. doi: 10.1016/j.matchemphys.2019.05.075. DOI
Rajput V.D., Minkina T.M., Behal A., Sushkova S.N., Mandzhieva S., Singh R., Gorovtsov A., Tsitsuashvili V.S., Purvis W.O., Ghazaryan K.A., et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotechnol. Monit. Manag. 2018;9:76–84. doi: 10.1016/j.enmm.2017.12.006. DOI
Nisar P., Ali N., Rahman L., Ali M., Shinwari Z.K. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. JBIC J. Biol. Inorg. Chem. 2019;24:929–941. doi: 10.1007/s00775-019-01717-7. PubMed DOI
Mohamed A.A., Fouda A., Abdel-Rahman M.A., Hassan S.E.-D., El-Gamal M.S., Salem S.S., Shaheen T.I. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal. Agric. Biotechnol. 2019;19:101103. doi: 10.1016/j.bcab.2019.101103. DOI
Gadd G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology. 2010;156:609–643. doi: 10.1099/mic.0.037143-0. PubMed DOI
Qin W., Wang C., Ma Y., Shen M., Li J., Jiao K., Tay F.R., Niu L. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. Adv. Mater. 2020;32:1907833. doi: 10.1002/adma.201907833. PubMed DOI
Burford E.P., Fomina M., Gadd G.M. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag. 2003;67:1127–1155. doi: 10.1180/0026461036760154. DOI
Polák F., Urík M., Bujdoš M., Matúš P. Aspergillus niger enhances oxalate production as a response to phosphate deficiency induced by aluminium(III) J. Inorg. Biochem. 2020;204:110961. doi: 10.1016/j.jinorgbio.2019.110961. PubMed DOI
Fomina M., Burford E.P., Gadd G.M. Fungal dissolution and transformation of minerals: Significance for nutrient and metal mobility. In: Gadd G.M., editor. Fungi in Biogeochemical Cycles. Cambridge University Press; Cambridge, UK: 2006. pp. 236–266.
Polák F., Urík M., Matúš P. Low molecular weight organic acids in soil environment. Chem. List. 2019;113:307–314.
Boriová K., Urík M., Bujdoš M., Pifková I., Matúš P. Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger’s exometabolites. Environ. Pollut. 2016;218:281–288. doi: 10.1016/j.envpol.2016.07.003. PubMed DOI
Ström L., Owen A.G., Godbold D.L., Jones D.L. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol. Biochem. 2005;37:2046–2054. doi: 10.1016/j.soilbio.2005.03.009. DOI
Sutjaritvorakul T., Gadd G.M., Whalley A.J.S., Suntornvongsagul K., Sihanonth P. Zinc Oxalate Crystal Formation by Aspergillus nomius. Geomicrobiol. J. 2016;33:289–293. doi: 10.1080/01490451.2015.1048395. DOI
Urík M., Hlodák M., Mikušová P., Matúš P. Potential of Microscopic Fungi Isolated from Mercury Contaminated Soils to Accumulate and Volatilize Mercury(II) Water Air Soil Pollut. 2014;225:2219. doi: 10.1007/s11270-014-2219-z. DOI
Sádecká J., Polonský J. Determination of organic acids in tobacco by capillary isotachophoresis. J. Chromatogr. A. 2003;988:161–165. doi: 10.1016/S0021-9673(03)00033-5. PubMed DOI
Bačík P., Ozdín D., Miglierini M., Kardošová P., Pentrák M., Haloda J. Crystallochemical effects of heat treatment on Fe-dominant tourmalines from Dolní Bory (Czech Republic) and Vlachovo (Slovakia) Phys. Chem. Miner. 2011;38:599–611. doi: 10.1007/s00269-011-0432-5. DOI
Ondruška J., Trnovcová V., Štubňa I., Bačík P. Depolarization currents in illite. J. Therm. Anal. Calorim. 2018;131:2285–2289. doi: 10.1007/s10973-017-6862-7. DOI
Du W., Sun Y., Ji R., Zhu J., Wu J., Guo H. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 2011;13:822–828. doi: 10.1039/c0em00611d. PubMed DOI
Kool P.L., Ortiz M.D., van Gestel C.A.M. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ. Pollut. 2011;159:2713–2719. doi: 10.1016/j.envpol.2011.05.021. PubMed DOI
Wei Z., Liang X., Pendlowski H., Hillier S., Suntornvongsagul K., Sihanonth P., Gadd G.M. Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ. Microbiol. 2013;15:2173–2186. doi: 10.1111/1462-2920.12089. PubMed DOI
Couri S., Pinto G.A.S., de Senna L.F., Martelli H.L. Influence of metal ions on pellet morphology and polygalacturonase synthesis by Aspergillus niger 3T5B8. Braz. J. Microbiol. 2003;34:16–21. doi: 10.1590/S1517-83822003000100005. DOI
Tarafdar J.C., Agrawal A., Raliya R., Kumar P., Burman U., Kaul R.K. ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv. Sci. Eng. Med. 2012;4:324–328. doi: 10.1166/asem.2012.1160. DOI
Wold W.S.M., Suzuki I. The citric acid fermentation by Aspergillus niger: Regulation by zinc of growth and acidogenesis. Can. J. Microbiol. 1976;22:1083–1092. doi: 10.1139/m76-159. PubMed DOI
Sardella D., Gatt R., Valdramidis V.P. Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology. 2018;9:43–48. doi: 10.1080/21501203.2017.1369187. PubMed DOI PMC
Sawai J., Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Appl. Microbiol. 2004;96:803–809. doi: 10.1111/j.1365-2672.2004.02234.x. PubMed DOI
Sayer J.A., Gadd G.M. Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol. Res. 1997;101:653–661. doi: 10.1017/S0953756296003140. DOI
Hulkoti N.I., Taranath T.C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces. 2014;121:474–483. doi: 10.1016/j.colsurfb.2014.05.027. PubMed DOI
Gadd G.M. Fungi, Rocks, and Minerals. Elements. 2017;13:171–176. doi: 10.2113/gselements.13.3.171. DOI
Akhtar N., Mannan M.A. Mycoremediation: Expunging environmental pollutants. Biotechnol. Rep. 2020;26:e00452. doi: 10.1016/j.btre.2020.e00452. PubMed DOI PMC
Mycosynthesis of Metal-Containing Nanoparticles-Fungal Metal Resistance and Mechanisms of Synthesis