A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31652660
PubMed Central
PMC6827047
DOI
10.3390/cancers11101618
PII: cancers11101618
Knihovny.cz E-zdroje
- Klíčová slova
- MAPK, cancer, drug resistance, molecular mechanisms,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both the homeostatic and the pathologic conduct of MAPK signaling; however, there is still much to be deciphered in terms of regulation and action models in both preclinical and clinical research. MAPK has implications in the response to cancer therapy, particularly the activation of the compensatory pathways in response to experimental MAPK inhibition. The present paper discusses new insights into MAPK as a complex cell signaling pathway with roles in the sustenance of cellular normal conduit, response to cancer therapy, and activation of compensatory pathways. Unfortunately, most MAPK inhibitors trigger resistance due to the activation of compensatory feed-back loops in tumor cells and tumor microenvironment components. Therefore, novel combinatorial therapies have to be implemented for cancer management in order to restrict the possibility of alternative pathway activation, as a perspective for developing novel therapies based on integration in translational studies.
Biozoon GmbH D 27572 Bremerhaven Germany
Central European Institute of Technology Masaryk University 601 77 Brno Czech Republic
Department of Comprehensive Cancer Care Masaryk Memorial Cancer Institute 601 77 Brno Czech Republic
Department of Pharmacognosy University of Vienna Althanstrasse 14 1090 Vienna Austria
Department of Surgery The Oncology Institute Prof Dr Ion Chiricuta 40015 Cluj Napoca Romania
Institute of Neurobiology Bulgarian Academy of Sciences 23 Acad G Bonchev str 1113 Sofia Bulgaria
th Surgical Department Municipal Hospital 400139 Cluj Napoca Romania
Zobrazit více v PubMed
Cancer Statistics. [(accessed on 15 October 2019)]; Available online: https://www.cancer.gov/about-cancer/understanding/statistics.
Cainap C., Nagy V., Seicean A., Gherman A., Laszlo I., Lisencu C., Nadim A.H., Constantin A.M., Cainap S. Results of third-generation epirubicin/cisplatin/xeloda adjuvant chemotherapy in patients with radically resected gastric cancer. J. BU ON. 2016;21:349–359. PubMed
Braicu C., Pileczki V., Irimie A., Berindan-Neagoe I. p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol. Cell. Biochem. 2013;381:61–68. doi: 10.1007/s11010-013-1688-5. PubMed DOI
Irimie A.I., Braicu C., Cojocneanu-Petric R., Berindan-Neagoe I., Campian R.S. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol. Scand. 2015;73:161–168. doi: 10.3109/00016357.2014.986754. PubMed DOI
Chiorean R., Braicu C., Berindan-Neagoe I. Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth? Breast. 2013;22:1026–1033. doi: 10.1016/j.breast.2013.08.007. PubMed DOI
Burz C., Aziz B.Y., Balacescu L., Lelutiu L., Buiga R., Samasca G., Irimie A., Lisencu C. Tumor markers used in monitoring the tumor recurrence in patients with colorectal cancer. Clujul Med. 2016;89:378–383. doi: 10.15386/cjmed-635. PubMed DOI PMC
Tomuleasa C., Braicu C., Irimie A., Craciun L., Berindan-Neagoe I. Nanopharmacology in translational hematology and oncology. Int. J. Nanomed. 2014;9:3465–3479. PubMed PMC
Plotnikov A., Zehorai E., Procaccia S., Seger R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta. 2011;1813:1619–1633. doi: 10.1016/j.bbamcr.2010.12.012. PubMed DOI
Liu F., Yang X., Geng M., Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm. Sini. B. 2018;8:552–562. doi: 10.1016/j.apsb.2018.01.008. PubMed DOI PMC
Bochis O.V., Irimie A., Pichler M., Berindan-Neagoe I. The role of Skp2 and its substrate CDKN1B (p27) in colorectal cancer. J. Gastrointest. Liver Dis. 2015;24:225–234. PubMed
Seles M., Hutterer G.C., Kiesslich T., Pummer K., Berindan-Neagoe I., Perakis S., Schwarzenbacher D., Stotz M., Gerger A., Pichler M. Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma. Int. J. Mol. Sci. 2016;17:573. doi: 10.3390/ijms17040573. PubMed DOI PMC
Sanchez-Vega F., Mina M., Armenia J., Chatila W.K., Luna A., La K.C., Dimitriadoy S., Liu D.L., Kantheti H.S., Saghafinia S., et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell. 2018;173:321–337. doi: 10.1016/j.cell.2018.03.035. PubMed DOI PMC
Braicu C., Catana C., Calin G.A., Berindan-Neagoe I. NCRNA combined therapy as future treatment option for cancer. Curr. Pharm. Des. 2014;20:6565–6574. doi: 10.2174/1381612820666140826153529. PubMed DOI
Braicu C., Zimta A.A., Harangus A., Iurca I., Irimie A., Coza O., Berindan-Neagoe I. The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers. 2019;11:605. doi: 10.3390/cancers11050605. PubMed DOI PMC
Jurj A., Braicu C., Pop L.A., Tomuleasa C., Gherman C.D., Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Dev. Ther. 2017;11:2871–2890. doi: 10.2147/DDDT.S142337. PubMed DOI PMC
Ganapathi M.K., Jones W.D., Sehouli J., Michener C.M., Braicu I.E., Norris E.J., Biscotti C.V., Vaziri S.A., Ganapathi R.N. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int. J. Cancer. 2016;138:679–688. doi: 10.1002/ijc.29815. PubMed DOI
Plotnikov A., Flores K., Maik-Rachline G., Zehorai E., Kapri-Pardes E., Berti D.A., Hanoch T., Besser M.J., Seger R. The nuclear translocation of ERK1/2 as an anticancer target. Nat. Commun. 2015;6:6685. doi: 10.1038/ncomms7685. PubMed DOI
Chapnick D.A., Warner L., Bernet J., Rao T., Liu X. Partners in crime: The TGFβ and MAPK pathways in cancer progression. Cell Biosci. 2011;1:42. doi: 10.1186/2045-3701-1-42. PubMed DOI PMC
Cargnello M., Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011;75:50–83. doi: 10.1128/MMBR.00031-10. PubMed DOI PMC
Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–1134. doi: 10.1016/j.cell.2010.06.011. PubMed DOI PMC
Johnson D.S., Chen Y.H. Ras Family of Small GTPases In Immunity And Inflammation. Curr. Opin. Pharmacol. 2012;12:458–463. doi: 10.1016/j.coph.2012.02.003. PubMed DOI PMC
Vo U., Vajpai N., Flavell L., Bobby R., Breeze A.L., Embrey K.J., Golovanov A.P. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence. J. Biol. Chem. 2016;291:1703–1718. doi: 10.1074/jbc.M115.691238. PubMed DOI PMC
Matallanas D., Birtwistle M., Romano D., Zebisch A., Rauch J., von Kriegsheim A., Kolch W. Raf Family Kinases: Old Dogs Have Learned New Tricks. Genes Cancer. 2011;2:232–260. doi: 10.1177/1947601911407323. PubMed DOI PMC
McCain J. The MAPK (ERK) Pathway: Investigational Combinations for the Treatment of BRAF-Mutated Metastatic Melanoma. Pharm. Ther. 2013;38:96–108. PubMed PMC
Fanger G.R., Johnson N.L., Johnson G.L. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J. 1997;16:4961–4972. doi: 10.1093/emboj/16.16.4961. PubMed DOI PMC
Lavoie H., Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 2015;16:281–298. doi: 10.1038/nrm3979. PubMed DOI
Stern D.F. Keeping Tumors Out of the MAPK Fitness Zone. Cancer Discov. 2018;8:20–23. doi: 10.1158/2159-8290.CD-17-1243. PubMed DOI
Burotto M., Chiou V.L., Lee J.M., Kohn E.C. The MAPK pathway across different malignancies: A new perspective. Cancer. 2014;120:3446–3456. doi: 10.1002/cncr.28864. PubMed DOI PMC
Johne C., Matenia D., Li X.-y., Timm T., Balusamy K., Mandelkow E.M. Spred1 and TESK1—Two New Interaction Partners of the Kinase MARKK/TAO1 That Link the Microtubule and Actin Cytoskeleton. Mol. Biol. Cell. 2008;19:1391–1403. doi: 10.1091/mbc.e07-07-0730. PubMed DOI PMC
Sullivan R.J., Infante J.R., Janku F., Wong D.J.L., Sosman J.A., Keedy V., Patel M.R., Shapiro G.I., Mier J.W., Tolcher A.W., et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discov. 2018;8:184–195. doi: 10.1158/2159-8290.CD-17-1119. PubMed DOI
COSMIC, Catalogue of Somatic Mutations in Cance. [(accessed on 16 October 2019)]; Available online: http://sanger.ac.uk/cosmic.
Fernández-Medarde A., Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2:344–358. doi: 10.1177/1947601911411084. PubMed DOI PMC
Setia S., Nehru B., Sanyal S.N. Upregulation of MAPK/Erk and PI3K/Akt pathways in ulcerative colitis-associated colon cancer. Biomed. Pharmacother. 2014;68:1023–1029. doi: 10.1016/j.biopha.2014.09.006. PubMed DOI
Kiessling M.K., Curioni-Fontecedro A., Samaras P., Atrott K., Cosin-Roger J., Lang S., Scharl M., Rogler G. Mutant HRAS as novel target for MEK and mTOR inhibitors. Oncotarget. 2015;6:42183–42196. doi: 10.18632/oncotarget.5619. PubMed DOI PMC
Joseph E.W., Pratilas C.A., Poulikakos P.I., Tadi M., Wang W., Taylor B.S., Halilovic E., Persaud Y., Xing F., Viale A., et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. USA. 2010;107:14903–14908. doi: 10.1073/pnas.1008990107. PubMed DOI PMC
Bousova K., Jirku M., Bumba L., Bednarova L., Sulc M., Franek M., Vyklicky L., Vondrasek J., Teisinger J. PIP2 and PIP3 interact with N-terminus region of TRPM4 channel. Biophys. Chem. 2015;205:24–32. doi: 10.1016/j.bpc.2015.06.004. PubMed DOI
Milella M., Falcone I., Conciatori F., Matteoni S., Sacconi A., De Luca T., Bazzichetto C., Corbo V., Simbolo M., Sperduti I., et al. PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Sci. Rep. 2017;7:43013. doi: 10.1038/srep43013. PubMed DOI PMC
Zhang J., Xiang Z., Malaviarachchi P.A., Yan Y., Baltz N.J., Emanuel P.D., Liu Y.L. PTEN is indispensable for cells to respond to MAPK inhibitors in myeloid leukemia. Cell. Signal. 2018;50:72–79. doi: 10.1016/j.cellsig.2018.06.004. PubMed DOI
Linthicum W., Thanh M.H., Vitolo M.I., Wen Q. Effects of PTEN Loss and Activated KRAS Overexpression on Mechanical Properties of Breast Epithelial Cells. Int. J. Mol. Sci. 2018;19:1613. doi: 10.3390/ijms19061613. PubMed DOI PMC
Mulholland D.J., Kobayashi N., Ruscetti M., Zhi A., Tran L.M., Huang J., Gleave M., Wu H. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012;72:1878–1889. doi: 10.1158/0008-5472.CAN-11-3132. PubMed DOI PMC
Mooz J., Oberoi-Khanuja T.K., Harms G.S., Wang W., Jaiswal B.S., Seshagiri S., Tikkanen R., Rajalingam K. Dimerization of the kinase ARAF promotes MAPK pathway activation and cell migration. Sci. Signal. 2014;7:73. doi: 10.1126/scisignal.2005484. PubMed DOI
Turke A.B., Song Y., Costa C., Cook R., Arteaga C.L., Asara J.M., Engelman J.A. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res. 2012;72:3228–3237. doi: 10.1158/0008-5472.CAN-11-3747. PubMed DOI PMC
Speth Z., Islam T., Banerjee K., Resat H. EGFR signaling pathways are wired differently in normal 184A1L5 human mammary epithelial and MDA-MB-231 breast cancer cells. J. Cell Commun. Signal. 2017;11:341–356. doi: 10.1007/s12079-017-0389-3. PubMed DOI PMC
Gschwantler-Kaulich D., Grunt T.W., Muhr D., Wagner R., Kolbl H., Singer C.F. HER Specific TKIs Exert Their Antineoplastic Effects on Breast Cancer Cell Lines through the Involvement of STAT5 and JNK. PLoS ONE. 2016;11:e0146311. doi: 10.1371/journal.pone.0146311. PubMed DOI PMC
Gkouveris I., Nikitakis N., Karanikou M., Rassidakis G., Sklavounou A. JNK1/2 expression and modulation of STAT3 signaling in oral cancer. Oncol. Lett. 2016;12:699–706. doi: 10.3892/ol.2016.4614. PubMed DOI PMC
El-Habr E.A., Levidou G., Trigka E.A., Sakalidou J., Piperi C., Chatziandreou I., Spyropoulou A., Soldatos R., Tomara G., Petraki K., et al. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch. 2014;465:473–485. doi: 10.1007/s00428-014-1641-3. PubMed DOI
Wolf A., Eulenfeld R., Gabler K., Rolvering C., Haan S., Behrmann I., Denecke B., Haan C., Schaper F. JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells. Jak-Stat. 2013;2:e24574. doi: 10.4161/jkst.24574. PubMed DOI PMC
Wee S., Jagani Z., Xiang K.X., Loo A., Dorsch M., Yao Y.M., Sellers W.R., Lengauer C., Stegmeier F. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 2009;69:4286–4293. doi: 10.1158/0008-5472.CAN-08-4765. PubMed DOI
Mendoza M.C., Er E.E., Blenis J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011;36:320–328. doi: 10.1016/j.tibs.2011.03.006. PubMed DOI PMC
Conciatori F., Ciuffreda L., Bazzichetto C., Falcone I., Pilotto S., Bria E., Cognetti F., Milella M. mTOR Cross-Talk in Cancer and Potential for Combination Therapy. Cancers. 2018;10:23. doi: 10.3390/cancers10010023. PubMed DOI PMC
Guertin D.A., Sabatini D.M. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22. doi: 10.1016/j.ccr.2007.05.008. PubMed DOI
Im E., von Lintig F.C., Chen J., Zhuang S., Qui W., Chowdhury S., Worley P.F., Boss G.R., Pilz R.B. Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene. 2002;21:6356–6365. doi: 10.1038/sj.onc.1205792. PubMed DOI
Sheppard K.E., Cullinane C., Hannan K.M., Wall M., Chan J., Barber F., Foo J., Cameron D., Neilsen A., Ng P., et al. Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors. Eur. J. Cancer. 2013;49:3936–3944. doi: 10.1016/j.ejca.2013.08.007. PubMed DOI
Li J.P., Yang Y.X., Liu Q.L., Pan S.T., He Z.X., Zhang X., Yang T., Chen X.W., Wang D., Qiu J.X., et al. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. Drug Des. Dev. Ther. 2015;9:1627–1652. PubMed PMC
Kotani H., Adachi Y., Kitai H., Tomida S., Bando H., Faber A.C., Yoshino T., Voon D.C., Yano S., Ebi H. Distinct dependencies on receptor tyrosine kinases in the regulation of MAPK signaling between BRAF V600E and non-V600E mutant lung cancers. Oncogene. 2018;37:1775–1787. doi: 10.1038/s41388-017-0035-9. PubMed DOI
Zhao Y., Ge C.C., Wang J., Wu X.X., Li X.M., Li W., Wang S.S., Liu T., Hou J.Z., Sun H., et al. MEK inhibitor, PD98059, promotes breast cancer cell migration by inducing beta-catenin nuclear accumulation. Oncol. Rep. 2017;38:3055–3063. doi: 10.3892/or.2017.5955. PubMed DOI
Elston R., Inman G.J. Crosstalk between p53 and TGF-β Signalling. J. Signal Transduct. 2012;2012:294097. doi: 10.1155/2012/294097. PubMed DOI PMC
Stramucci L., Pranteda A., Bossi G. Insights of Crosstalk between p53 Protein and the MKK3/MKK6/p38 MAPK Signaling Pathway in Cancer. Cancers. 2018;10:131. doi: 10.3390/cancers10050131. PubMed DOI PMC
Slobodnyuk K., Radic N., Ivanova S., Llado A., Trempolec N., Zorzano A., Nebreda A.R. Autophagy-induced senescence is regulated by p38alpha signaling. Cell Death Dis. 2019;10:376. doi: 10.1038/s41419-019-1607-0. PubMed DOI PMC
Peng W.X., Huang J.G., Yang L., Gong A.H., Mo Y.Y. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol. Cancer. 2017;16:161. doi: 10.1186/s12943-017-0727-3. PubMed DOI PMC
Han D., Wang M., Yu Z., Yin L., Liu C., Wang J., Liu Y., Jiang S., Ren Z., Yin J. FGF5 promotes osteosarcoma cells proliferation via activating MAPK signaling pathway. Cancer Manag. Res. 2019;11:6457–6466. doi: 10.2147/CMAR.S200234. PubMed DOI PMC
Jilaveanu L.B., Zito C.R., Aziz S.A., Conrad P.J., Schmitz J.C., Sznol M., Camp R.L., Rimm D.L., Kluger H.M. C-Raf is Associated with Disease Progression and Cell Proliferation in a Subset of Melanomas. Clin. Cancer Res. 2009;15:5704–5713. doi: 10.1158/1078-0432.CCR-09-0198. PubMed DOI PMC
Wang T., Seah S., Loh X., Chan C.W., Hartman M., Goh B.C., Lee S.C. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget. 2016;7:2532–2544. doi: 10.18632/oncotarget.6304. PubMed DOI PMC
Van Gijn S.E., Wierenga E., van den Tempel N., Kok Y.P., Heijink A.M., Spierings D.C.J., Foijer F., van Vugtk M.A.T.M., Fehrmann R.S.N. TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells. Oncogene. 2019;38:852–867. doi: 10.1038/s41388-018-0470-2. PubMed DOI PMC
Huang O., Zhang W., Zhi Q., Xue X., Liu H., Shen D., Geng M., Xie Z., Jiang M. Teriflunomide, an immunomodulatory drug, exerts anticancer activity in triple negative breast cancer cells. Exp. Biol. Med. 2015;240:426–437. doi: 10.1177/1535370214554881. PubMed DOI PMC
Dubey N.K., Peng B.Y., Lin C.M., Wang P.D., Wang J.R., Chan C.H., Wei H.J., Deng W.P. NSC 95397 Suppresses Proliferation and Induces Apoptosis in Colon Cancer Cells through MKP-1 and the ERK1/2 Pathway. Int. J. Mol. Sci. 2018;19:1625. doi: 10.3390/ijms19061625. PubMed DOI PMC
Liu P.C., Lu G., Deng Y., Wang C.D., Su X.W., Zhou J.Y., Chan T.M., Hu X., Poon W.S. Inhibition of NF-kappaB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) Combination Therapy. PLoS ONE. 2017;12:e0171157. PubMed PMC
Quail D.F., Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013;19:1423–1437. doi: 10.1038/nm.3394. PubMed DOI PMC
Barker H.E., Paget J.T., Khan A.A., Harrington K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer. 2015;15:409–425. doi: 10.1038/nrc3958. PubMed DOI PMC
Smith M.P., Sanchez-Laorden B., O’Brien K., Brunton H., Ferguson J., Young H., Dhomen N., Flaherty K.T., Frederick D.T., Cooper Z.A., et al. The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov. 2014;4:1214–1229. doi: 10.1158/2159-8290.CD-13-1007. PubMed DOI PMC
Shen B., Delaney M.K., Du X. Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr. Opin. Cell Biol. 2012;24:600–606. doi: 10.1016/j.ceb.2012.08.011. PubMed DOI PMC
Ionescu C., Braicu C., Chiorean R., Cojocneanu Petric R., Neagoe E., Pop L., Chira S., Berindan-Neagoe I. TIMP-1 expression in human colorectal cancer is associated with SMAD3 gene expression levels: A pilot study. J. Gastrointest. Liver Dis. 2014;23:413–418. PubMed
Tudoran O., Soritau O., Balacescu O., Balacescu L., Braicu C., Rus M., Gherman C., Virag P., Irimie F., Berindan-Neagoe I. Early transcriptional pattern of angiogenesis induced by EGCG treatment in cervical tumour cells. J. Cell. Mol. Med. 2012;16:520–530. doi: 10.1111/j.1582-4934.2011.01346.x. PubMed DOI PMC
Longmate W., DiPersio C.M. Beyond adhesion: emerging roles for integrins in control of the tumor microenvironment. F1000 Res. 2017;6:1612. doi: 10.12688/f1000research.11877.1. PubMed DOI PMC
Potempa S., Ridley A.J. Activation of Both MAP Kinase and Phosphatidylinositide 3-Kinase by Ras Is Required for Hepatocyte Growth Factor/Scatter Factor–induced Adherens Junction Disassembly. Mol. Biol. Cell. 1998;9:2185–2200. doi: 10.1091/mbc.9.8.2185. PubMed DOI PMC
Mauro C.D., Pesapane A., Formisano L., Rosa R., D’Amato V., Ciciola P., Servetto A., Marciano R., Orsini R.C., Monteleone F., et al. Urokinase-type plasminogen activator receptor (uPAR) expression enhances invasion and metastasis in RAS mutated tumors. Sci. Rep. 2017;7:9388. doi: 10.1038/s41598-017-10062-1. PubMed DOI PMC
Weigelt B., Lo A.T., Park C.C., Gray J.W., Bissell M.J. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res. Treat. 2010;122:35–43. doi: 10.1007/s10549-009-0502-2. PubMed DOI PMC
Leelahavanichkul K., Amornphimoltham P., Molinolo A.A., Basile J.R., Koontongkaew S., Gutkind J.S. A role for p38 MAPK in head and neck cancer cell growth and tumor-induced angiogenesis and lymphangiogenesis. Mol. Oncol. 2014;8:105–118. doi: 10.1016/j.molonc.2013.10.003. PubMed DOI PMC
Martinez-Outschoorn U.E., Curry J.M., Ko Y.H., Lin Z., Tuluc M., Cognetti D., Birbe R.C., Pribitkin E., Bombonati A., Pestell R.G., et al. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFkappaB target stromal MCT4. Cell Cycle. 2013;12:2580–2597. doi: 10.4161/cc.25510. PubMed DOI PMC
Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92. doi: 10.2147/HP.S93413. PubMed DOI PMC
Sang N., Stiehl D.P., Bohensky J., Leshchinsky I., Srinivas V., Caro J. MAPK Signaling Up-regulates the Activity of Hypoxia-inducible Factors by Its Effects on p300. J. Biol. Chem. 2003;278:14013–14019. doi: 10.1074/jbc.M209702200. PubMed DOI PMC
Fuxe J., Karlsson M.C. TGF-beta-induced epithelial-mesenchymal transition: A link between cancer and inflammation. Semin. Cancer Biol. 2012;22:455–461. doi: 10.1016/j.semcancer.2012.05.004. PubMed DOI
Turley E.A., Veiseh M., Radisky D.C., Bissell M.J. Mechanisms of Disease: Epithelial–mesenchymal transition—does cellular plasticity fuel neoplastic progression? Nat. Rev. Clin. Oncol. 2008;5:280–290. doi: 10.1038/ncponc1089. PubMed DOI PMC
Cullis J., Das S., Bar-Sagi D. Kras and Tumor Immunity: Friend or Foe? Cold Spring Harb. Perspect. Med. 2018;8:a031849. doi: 10.1101/cshperspect.a031849. PubMed DOI PMC
Caetano M.S., Zhang H., Cumpian A.M., Gong L., Unver N., Ostrin E.J., Daliri S., Chang S.H., Ochoa C.E., Hanash S., et al. IL6 Blockade Reprograms the Lung Tumor Microenvironment to Limit the Development and Progression of K-ras-Mutant Lung Cancer. Cancer Res. 2016;76:3189–3199. doi: 10.1158/0008-5472.CAN-15-2840. PubMed DOI PMC
Gulei D., Mehterov N., Ling H., Stanta G., Braicu C., Berindan-Neagoe I. The “good-cop bad-cop” TGF-beta role in breast cancer modulated by non-coding RNAs. Biochim. Biophys. Acta. 2017;1861:1661–1675. doi: 10.1016/j.bbagen.2017.04.007. PubMed DOI
Forsyth C.B., Pulai J., Loeser R.F. Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum. 2002;46:2368–2376. doi: 10.1002/art.10502. PubMed DOI
Kummar S., Chen H.X., Wright J., Holbeck S., Millin M.D., Tomaszewski J., Zweibel J., Collins J., Doroshow J.H. Utilizing targeted cancer therapeutic agents in combination: Novel approaches and urgent requirements. Nat. Rev. Drug Discov. 2010;9:843–856. doi: 10.1038/nrd3216. PubMed DOI
Humphrey R.W., Brockway-Lunardi L.M., Bonk D.T., Dohoney K.M., Doroshow J.H., Meech S.J., Ratain M.J., Topalian S.L., Pardoll D.M. Opportunities and challenges in the development of experimental drug combinations for cancer. J. Natl. Cancer Inst. 2011;103:1222–1226. doi: 10.1093/jnci/djr246. PubMed DOI PMC
Alspach E., Flanagan K.C., Luo X., Ruhland M.K., Huang H., Pazolli E., Donlin M.J., Marsh T., Piwnica-Worms D., Monahan J., et al. p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov. 2014;4:716–729. doi: 10.1158/2159-8290.CD-13-0743. PubMed DOI PMC
Grossi V., Peserico A., Tezil T., Simone C. p38alpha MAPK pathway: A key factor in colorectal cancer therapy and chemoresistance. World J. Gastroenterol. 2014;20:9744–9758. doi: 10.3748/wjg.v20.i29.9744. PubMed DOI PMC
Poulikakos P.I., Solit D.B. Resistance to MEK inhibitors: Should we co-target upstream? Sci. Signal. 2011;4:16. doi: 10.1126/scisignal.2001948. PubMed DOI
Hatzivassiliou G., Song K., Yen I., Brandhuber B.J., Anderson D.J., Alvarado R., Ludlam M.J., Stokoe D., Gloor S.L., Vigers G., et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–435. doi: 10.1038/nature08833. PubMed DOI
Bockorny B., Rusan M., Chen W., Liao R.G., Li Y., Piccioni F., Wang J., Tan L., Thorner A.R., Li T., et al. RAS-MAPK Reactivation Facilitates Acquired Resistance in FGFR1-Amplified Lung Cancer and Underlies a Rationale for Upfront FGFR-MEK Blockade. Mol. Cancer Ther. 2018;17:1526–1539. doi: 10.1158/1535-7163.MCT-17-0464. PubMed DOI PMC
Hinton S.D. The role of pseudophosphatases as signaling regulators. Biochim. Biophys. Acta. 2019;1866:167–174. doi: 10.1016/j.bbamcr.2018.07.021. PubMed DOI
Pathria G., Garg B., Borgdorff V., Garg K., Wagner C., Superti-Furga G., Wagner S.N. Overcoming MITF-conferred drug resistance through dual AURKA/MAPK targeting in human melanoma cells. Cell Death Dis. 2016;7:e2135. doi: 10.1038/cddis.2015.369. PubMed DOI PMC
Haq R., Yokoyama S., Hawryluk E.B., Jönsson G.B., Frederick D.T., McHenry K., Porter D., Tran T.-N., Love K.T., Langer R., et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl. Acad. Sci. USA. 2013;110:4321–4326. doi: 10.1073/pnas.1205575110. PubMed DOI PMC
Najem A., Krayem M., Sales F., Hussein N., Badran B., Robert C., Awada A., Journe F., Ghanem G.E. P53 and MITF/Bcl-2 identified as key pathways in the acquired resistance of NRAS-mutant melanoma to MEK inhibition. Eur. J. Cancer. 2017;83:154–165. doi: 10.1016/j.ejca.2017.06.033. PubMed DOI
Marampon F., Ciccarelli C., Zani B.M. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int. J. Mol. Sci. 2019;20:2530. doi: 10.3390/ijms20102530. PubMed DOI PMC
Del Curatolo A., Conciatori F., Cesta Incani U., Bazzichetto C., Falcone I., Corbo V., D’Agosto S., Eramo A., Sette G., Sperduti I., et al. Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models. J. Exp. Clin. Cancer Res. 2018;37:140. doi: 10.1186/s13046-018-0820-5. PubMed DOI PMC
Sato H., Yamamoto H., Sakaguchi M., Shien K., Tomida S., Shien T., Ikeda H., Hatono M., Torigoe H., Namba K., et al. Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer. Cancer Sci. 2018;109:3183. doi: 10.1111/cas.13763. PubMed DOI PMC
Mali A.V., Joshi A.A., Hegde M.V., Kadam S.S. Enterolactone modulates the ERK/NF-kappaB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-beta-induced epithelial-mesenchymal transition. Cancer Biol. Med. 2018;15:137–156. PubMed PMC
Lu H., Liu S., Zhang G., Wu B., Zhu Y., Frederick D.T., Hu Y., Zhong W., Randell S., Sadek N., et al. PAK Signaling Drives Acquired Drug Resistance to MAPK Inhibitors in BRAF-mutant Melanomas. Nature. 2017;550:133–136. doi: 10.1038/nature24040. PubMed DOI PMC
Zhu X., Shen X., Qu J., Straubinger R.M., Jusko W.J. Multi-Scale Network Model Supported by Proteomics for Analysis of Combined Gemcitabine and Birinapant Effects in Pancreatic Cancer Cells. CPT. 2018;7:549–561. doi: 10.1002/psp4.12320. PubMed DOI PMC
Maverakis E., Cornelius L.A., Bowen G.M., Phan T., Patel F.B., Fitzmaurice S., He Y., Burrall B., Duong C., Kloxin A.M., et al. Metastatic melanoma—A review of current and future treatment options. Acta Derm. Venereol. 2015;95:516–524. doi: 10.2340/00015555-2035. PubMed DOI
Poulikakos P.I., Zhang C., Bollag G., Shokat K.M., Rosen N. RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF. Nature. 2010;464:427–430. doi: 10.1038/nature08902. PubMed DOI PMC
Liu X., Wu J., Qin H., Xu J. The Role of Autophagy in the Resistance to BRAF Inhibition in BRAF-Mutated Melanoma. Target. Oncol. 2018;13:437–446. doi: 10.1007/s11523-018-0565-2. PubMed DOI
Ahern T.P., Lash T.L., Damkier P., Christiansen P.M., On behalf of the Danish Breast Cancer Cooperative Group. Cronin-Fenton D.P. Statins and breast cancer prognosis: Evidence and opportunities. Lancet Oncol. 2014;15:e461–e468. doi: 10.1016/S1470-2045(14)70119-6. PubMed DOI PMC
Clinicaltrials.gov. [(accessed on 16 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT00334542.
Furberg C.D., Friedman L.M. Approaches to data analyses of clinical trials. Prog. Cardiovasc. Dis. 2012;54:330–334. doi: 10.1016/j.pcad.2011.07.002. PubMed DOI
Polivka J., Jr., Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol. Ther. 2014;142:164–175. doi: 10.1016/j.pharmthera.2013.12.004. PubMed DOI
Liu Q., Yu S., Zhao W., Qin S., Chu Q., Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer. 2018;17:53. doi: 10.1186/s12943-018-0793-1. PubMed DOI PMC
Tolcher A.W., Patnaik A., Papadopoulos K.P., Rasco D.W., Becerra C.R., Allred A.J., Orford K., Aktan G., Ferron-Brady G., Ibrahim N., et al. Phase I study of the MEK inhibitor trametinib in combination with the AKT inhibitor afuresertib in patients with solid tumors and multiple myeloma. Cancer Chemother. Pharmacol. 2015;75:183–189. doi: 10.1007/s00280-014-2615-5. PubMed DOI
Carter C.A., Rajan A., Keen C., Szabo E., Khozin S., Thomas A., Brzezniak C., Guha U., Doyle L.A., Steinberg S.M., et al. Selumetinib with and without erlotinib in KRAS mutant and KRAS wild-type advanced nonsmall-cell lung cancer. Ann. Oncol. 2016;27:693–699. doi: 10.1093/annonc/mdw008. PubMed DOI PMC
Patnaik A., Haluska P., Tolcher A.W., Erlichman C., Papadopoulos K.P., Lensing J.L., Beeram M., Molina J.R., Rasco D.W., Arcos R.R., et al. A First-in-Human Phase I Study of the Oral p38 MAPK Inhibitor, Ralimetinib (LY2228820 Dimesylate), in Patients with Advanced Cancer. Clin. Cancer Res. 2016;22:1095–1102. doi: 10.1158/1078-0432.CCR-15-1718. PubMed DOI
Davies M.A., Saiag P., Robert C., Grob J.J., Flaherty K.T., Arance A., Chiarion-Sileni V., Thomas L., Lesimple T., Mortier L., et al. Dabrafenib plus trametinib in patients with BRAF(V600)-mutant melanoma brain metastases (COMBI-MB): A multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18:863–873. doi: 10.1016/S1470-2045(17)30429-1. PubMed DOI PMC
Planchard D., Besse B., Groen H.J.M., Souquet P.J., Quoix E., Baik C.S., Barlesi F., Kim T.M., Mazieres J., Novello S., et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17:984–993. doi: 10.1016/S1470-2045(16)30146-2. PubMed DOI PMC
Blumenschein G.R., Jr., Smit E.F., Planchard D., Kim D.W., Cadranel J., De Pas T., Dunphy F., Udud K., Ahn M.J., Hanna N.H., et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)dagger. Ann. Oncol. 2015;26:894–901. doi: 10.1093/annonc/mdv072. PubMed DOI PMC
Sosman J.A., Kim K.B., Schuchter L., Gonzalez R., Pavlick A.C., Weber J.S., McArthur G.A., Hutson T.E., Moschos S.J., Flaherty K.T., et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 2012;366:707–714. doi: 10.1056/NEJMoa1112302. PubMed DOI PMC
Andrlova H., Zeiser R., Meiss F. Cobimetinib (GDC-0973, XL518) Recent Results Cancer Res. 2018;211:177–186. PubMed
Germann U.A., Furey B.F., Markland W., Hoover R.R., Aronov A.M., Roix J.J., Hale M., Boucher D.M., Sorrell D.A., Martinez-Botella G., et al. Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib) Mol. Cancer Ther. 2017;16:2351–2363. doi: 10.1158/1535-7163.MCT-17-0456. PubMed DOI
Zou J., Lei T., Guo P., Yu J., Xu Q., Luo Y., Ke R., Huang D. Mechanisms shaping the role of ERK1/2 in cellular senescence. Mol. Med. Rep. 2019;19:759–770. PubMed PMC
Tomuleasa C., Cristea V., Irimie A. Sorafenib for advanced-stage hepatocellular carcinoma. Eur. J. Gastroenterol. Hepatol. 2012;24:346–347. doi: 10.1097/MEG.0b013e3283501a2e. PubMed DOI
Pall E., Groza I., Cenariu M., Soritau O., Gocza E., Tomuleasa C. Establishment of an embryonic stem cell line from blastocyst stage mouse embryos. Rom. J. Morphol. Embryol. 2011;52:1005–1010. PubMed
Clinical Trials. [(accessed on 15 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01271803.
Susman S., Rus-Ciuca D., Soritau O., Tomuleasa C., Buiga R., Mihu D., Pop V.I., Mihu C.M. Pancreatic exocrine adult cells and placental stem cells co-culture. Working together is always the best way to go. Rom. J. Morphol. Embryol. 2011;52:999–1004. PubMed
Philip P.A., Mahoney M.R., Holen K.D., Northfelt D.W., Pitot H.C., Picus J., Flynn P.J., Erlichman C. Phase 2 study of bevacizumab plus erlotinib in patients with advanced hepatocellular cancer. Cancer. 2012;118:2424–2430. doi: 10.1002/cncr.26556. PubMed DOI PMC
Bendell J.C., Javle M., Bekaii-Saab T.S., Finn R.S., Wainberg Z.A., Laheru D.A., Weekes C.D., Tan B.R., Khan G.N., Zalupski M.M., et al. A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor. Br. J. Cancer. 2017;116:575–583. doi: 10.1038/bjc.2017.10. PubMed DOI PMC
Karasawa M.M.G., Mohan C. Fruits as Prospective Reserves of bioactive Compounds: A Review. Nat. Prod. Bioprospect. 2018;8:335–346. doi: 10.1007/s13659-018-0186-6. PubMed DOI PMC
Cojocneanu Petric R., Braicu C., Raduly L., Zanoaga O., Dragos N., Monroig P., Dumitrascu D., Berindan-Neagoe I. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther. 2015;8:2053–2066. doi: 10.2147/OTT.S83597. PubMed DOI PMC
Catana C.S., Atanasov A.G., Berindan-Neagoe I. Natural products with anti-aging potential: Affected targets and molecular mechanisms. Biotechnol. Adv. 2018;36:1649–1656. doi: 10.1016/j.biotechadv.2018.03.012. PubMed DOI
Irimie A.I., Braicu C., Pasca S., Magdo L., Gulei D., Cojocneanu R., Ciocan C., Olariu A., Coza O., Berindan-Neagoe I. Role of Key Micronutrients from Nutrigenetic and Nutrigenomic Perspectives in Cancer Prevention. Medicina. 2019;55:283. doi: 10.3390/medicina55060283. PubMed DOI PMC
Budisan L., Gulei D., Zanoaga O.M., Irimie A.I., Sergiu C., Braicu C., Gherman C.D., Berindan-Neagoe I. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer. Int. J. Mol. Sci. 2017;18:1178. doi: 10.3390/ijms18061178. PubMed DOI PMC
Braicu C., Mehterov N., Vladimirov B., Sarafian V., Nabavi S.M., Atanasov A.G., Berindan-Neagoe I. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin. Cancer Biol. 2017;46:84–106. doi: 10.1016/j.semcancer.2017.06.011. PubMed DOI
Budisan L., Gulei D., Jurj A., Braicu C., Zanoaga O., Cojocneanu R., Pop L., Raduly L., Barbat A., Moldovan A., et al. Inhibitory Effect of CAPE and Kaempferol in Colon Cancer Cell Lines-Possible Implications in New Therapeutic Strategies. Int. J. Mol. Sci. 2019;20:1199. doi: 10.3390/ijms20051199. PubMed DOI PMC
Papademetrio D.L., Lompardia S.L., Simunovich T., Costantino S., Mihalez C.Y., Cavaliere V., Alvarez E. Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy. Target. Oncol. 2016;11:183–195. doi: 10.1007/s11523-015-0388-3. PubMed DOI
Gherman C., Braicu O.L., Zanoaga O., Jurj A., Pileczki V., Maralani M., Drigla F., Braicu C., Budisan L., Achimas-Cadariu P., et al. Caffeic acid phenethyl ester activates pro-apoptotic and epithelial-mesenchymal transition-related genes in ovarian cancer cells A2780 and A2780cis. Mol. Cell. Biochem. 2016;413:189–198. doi: 10.1007/s11010-015-2652-3. PubMed DOI
Lim W., Park S., Bazer F.W., Song G. Apigenin Reduces Survival of Choriocarcinoma Cells by Inducing Apoptosis via the PI3K/AKT and ERK1/2 MAPK Pathways. J. Cell. Physiol. 2016;231:2690–2699. doi: 10.1002/jcp.25372. PubMed DOI
Li H., Yoon J.H., Won H.J., Ji H.S., Yuk H.J., Park K.H., Park H.Y., Jeong T.S. Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-kappaB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int. Immunopharmacol. 2017;45:110–119. doi: 10.1016/j.intimp.2017.01.033. PubMed DOI
Lim W., Jeong M., Bazer F.W., Song G. Coumestrol Inhibits Proliferation and Migration of Prostate Cancer Cells by Regulating AKT, ERK1/2, and JNK MAPK Cell Signaling Cascades. J. Cell. Physiol. 2017;232:862–871. doi: 10.1002/jcp.25494. PubMed DOI
Lim W., Yang C., Park S., Bazer F.W., Song G. Inhibitory Effects of Quercetin on Progression of Human Choriocarcinoma Cells Are Mediated Through PI3K/AKT and MAPK Signal Transduction Cascades. J. Cell. Physiol. 2017;232:1428–1440. doi: 10.1002/jcp.25637. PubMed DOI
Kim G.D. Kaempferol Inhibits Angiogenesis by Suppressing HIF-1alpha and VEGFR2 Activation via ERK/p38 MAPK and PI3K/Akt/mTOR Signaling Pathways in Endothelial Cells. Prev. Nutr. Food Sci. 2017;22:320–326. doi: 10.3746/pnf.2017.22.4.320. PubMed DOI PMC
Malloy K.M., Wang J., Clark L.H., Fang Z., Sun W., Yin Y., Kong W., Zhou C., Bae-Jump V.L. Novasoy and genistein inhibit endometrial cancer cell proliferation through disruption of the AKT/mTOR and MAPK signaling pathways. Am. J. Transl. Res. 2018;10:784–795. PubMed PMC
Cui S., Wang J., Wu Q., Qian J., Yang C., Bo P. Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget. 2017;8:21674–21691. doi: 10.18632/oncotarget.15535. PubMed DOI PMC
Borah N., Gunawardana S., Torres H., McDonnell S., Van Slambrouck S. 5,6,7,3′,4′,5′-Hexamethoxyflavone inhibits growth of triple-negative breast cancer cells via suppression of MAPK and Akt signaling pathways and arresting cell cycle. Int. J. Oncol. 2017;51:1685–1693. doi: 10.3892/ijo.2017.4157. PubMed DOI PMC
Salehi B., Mishra A.P., Nigam M., Sener B., Kilic M., Sharifi-Rad M., Fokou P.V.T., Martins N., Sharifi-Rad J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines. 2018;6:91. doi: 10.3390/biomedicines6030091. PubMed DOI PMC
Ge J., Liu Y., Li Q., Guo X., Gu L., Ma Z.G., Zhu Y.P. Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed. Environ. Sci. 2013;26:902–911. PubMed
Zhu J., Yu W., Liu B., Wang Y., Shao J., Wang J., Xia K., Liang C., Fang W., Zhou C., et al. Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2017;8:e3113. doi: 10.1038/cddis.2017.488. PubMed DOI PMC
Aldonza M.B.D., Hong J.Y., Bae S.Y., Song J., Kim W.K., Oh J., Shin Y., Lee S.H., Lee S.K. Suppression of MAPK Signaling and Reversal of mTOR-Dependent MDR1-Associated Multidrug Resistance by 21α-Methylmelianodiol in Lung Cancer Cells. PLoS ONE. 2015;10:e0127841. PubMed PMC
Luo W., Liu X., Sun W., Lu J.J., Wang Y., Chen X. Toosendanin, a natural product, inhibited TGF-beta1-induced epithelial-mesenchymal transition through ERK/Snail pathway. Phytother. Res. 2018;32:2009–2020. doi: 10.1002/ptr.6132. PubMed DOI
Phosphorylated and Phosphomimicking Variants May Differ-A Case Study of 14-3-3 Protein