A chromosome-scale reference of Chenopodium watsonii helps elucidate relationships within the North American A-genome Chenopodium species and with quinoa

. 2023 Sep ; 16 (3) : e20349. [epub] 20230517

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37195017

Quinoa (Chenopodium quinoa), an Andean pseudocereal, attained global popularity beginning in the early 2000s due to its protein quality, glycemic index, and high fiber, vitamin, and mineral contents. Pitseed goosefoot (Chenopodium berlandieri), quinoa's North American free-living sister species, grows on disturbed and sandy substrates across the North America, including saline coastal sands, southwestern deserts, subtropical highlands, the Great Plains, and boreal forests. Together with South American avian goosefoot (Chenopodium hircinum) they comprise the American tetraploid goosefoot complex (ATGC). Superimposed on pitseed goosefoot's North American range are approximately 35 AA diploids, most of which are adapted to a diversity of niche environments. We chose to assemble a reference genome for Sonoran A-genome Chenopodium watsonii due to fruit morphological and high (>99.3%) preliminary sequence-match similarities with quinoa, along with its well-established taxonomic status. The genome was assembled into 1377 scaffolds spanning 547.76 Mb (N50 = 55.14 Mb, L50 = 5), with 94% comprised in nine chromosome-scale scaffolds and 93.9% Benchmarking Universal Single-Copy Orthologs genes identified as single copy and 3.4% as duplicated. A high degree of synteny, with minor and mostly telomeric rearrangements, was found when comparing this taxon with the previously reported genome of South American C. pallidicaule and the A-subgenome chromosomes of C. quinoa. Phylogenetic analysis was performed using 10,588 single-nucleotide polymorphisms generated by resequencing a panel of 41 New World AA diploid accessions and the Eurasian H-genome diploid Chenopodium vulvaria, along with three AABB tetraploids previously sequenced. Phylogenetic analysis of these 32 taxa positioned the psammophyte Chenopodium subglabrum on the branch containing A-genome sequences from the ATGC. We also present evidence for long-range dispersal of Chenopodium diploids between North and South America.

Zobrazit více v PubMed

Aellen, P. (1960). Chenopodiaceae. (In German). In K. H. H. Rechinger (Ed.), Illustrierte Flora von Mitteleuropa, 3(2), 533-762.

Aellen, P., & Just, T. (1943). Key and synopsis of the American species of Chenopodium L. The American Midland Naturalist, 30, 47-76. https://doi.org/10.2307/2421263

Aksenova, A. Y., Greenwell, P. W., Dominska, M., Shishkin, A. A., Kim, J. C., Petes, T. D., & Mirkin, S. M. (2013). Genome rearrangements caused by interstitial telomeric sequences in yeast. Biological Sciences, 110(49), 19866-19871. https://doi.org/10.1073/pnas.1319313110

Azurita-Silva, A., Jacobsen, S., Razzaghi, F., Alvarez-Flores, R., Ruiz, K. B., Morales, A., & Silva, H. (2015). Quinoa drought responses and adaptation. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the art report of quinoa in the world in 2013 (pp. 157-171). FAO & CIRAD. https://www.fao.org/3/i4042e/i4042e.pdf

Bandi, V. K., & Gutwin, K. (2020). Interactive exploration of genomic conservation. In Proceedings of the 46th Graphics Interface Conference on Proceedings of Graphics Interface 2020 (GI’20). Canadian Human-Computer Communications Society. https://synvisio.github.io/

Benet-Pierce, N., & Simpson, M. G. (2010). Chenopodium littoreum (Chenopodiaceae), a new goosefoot from dunes of South-Central coastal California. Madrono, 57(1), 64-72. https://doi.org/10.3220/0024-9637-57.1.64

Benet-Pierce, N., & Simpson, M. G. (2014). The taxonomy of Chenopodium desiccatum and C. nitens, sp. nov. Journal of the Torrey Botanical Society, 141(2), 161-172. https://doi.org/10.3159/TORREY-D-13-00046.1

Benet-Pierce, N., & Simpson, M. G. (2017). Taxonomic recovery of the species in the Chenopodium neomexicanum (Chenopodiaceae) complex and description of Chenopodium sonorense sp. nov. The Journal of the Torrey Botanical Society, 144(3), 339-356. https://doi.org/10.3159/TORREY-D-16-00013.1

Benet-Pierce, N., & Simpson, M. G. (2019). The taxonomy of Chenopodium hians, C. incognitum, and ten new taxa within the narrow-leaved Chenopodium group in western North America, with special attention to California. Madrono, 66(2), 56-75. https://doi.org/10.3120/0024-9637-66.2.56

Bhargava, A., & Srivastava, S. (2013). Quinoa: Botany, production, and uses. CABI Publishers.

Biondi, S., Ruiz, K. B., Martínez, E. A., Zurita-Silva, A., Orsini, F., Antognoni, F., Dinelli, G., Marotti, I., Gianquinto, G., Maldonado, S., Burrieza, H., Bazile, D., Adolf, V. I., & Jacobsen, F. (2015). Tolerance to saline conditions. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the art report on quinoa around the world in 2013 (pp. 143-156). FAO & CIRAD.

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-20. https://doi.org/10.1093/bioinformatics/btu170

Boussau, B., & Scornavacca, C. (2020). Reconciling gene trees with species trees. In C. Scornavacca, F. Delsuc, & N. Galtier (Eds.), Phylogenetics in the genomic era (pp. 3.2:1-3.2:23.). https://www.jse.ac.cn/EN/Y2008/V46/I3/239

Bowman, M. J., Pulman, J. A., Liu, T. L., & Childs, K. L. (2017). A modified GC-specific MAKER gene annotation method revels improved and novel gene predictions of high and low GC content in Orzya sativa. BMC Bioinformatics, 18, 522. https://doi.org/10.1186/s12859-017-1942-z

Brown, D. C., Cepeda-Cornejo, V., Maughan, P. J., & Jellen, E. N. (2015). Characterization of the granule-bound starch synthase I gene in Chenopodium. The Plant Genome, 8(1), plantgenome2014.09.0051. https://doi.org/10.3835/plantgenome2014.09.0051

Cain, M. L., Milligan, B. G., & Strand, A. E. (2000). Long-distance seed dispersal in plant populations. American Journal of Botany, 87(9), 1217-1227. https://doi.org/10.2307/2656714

Cepeda-Cornejo, V., Brown, D. C., Palomino, G., de la Cruz, E., Fogarty, M., Maughan, P. J., & Jellen, E. N. (2016). Genetic variation of the granule-bound starch synthase I (GBSSI) genes in waxy and non-waxy accessions of Chenopodium berlandieri ssp. Nuttaliae from Central Mexico. Plant Genetic Resources: Characterization and Utilization, 14(1), 57-66. https://doi.org/10.1017/S1479262115000076

Clemants, S. E., & Mosyakin, S. L. (2004). Chenopodium. In Flora of North America Editorial Committee (Eds.), Flora of North America North of Mexico (Vol. 4, pp. 275-299). Oxford University Press.

COSEWIC. (2006). COSEWIC assessment and update status report on the smooth goosefoot Chenopodium subglabrum in Canada. Committee on the Status of Endangered Wildlife in Canada. https://species-registry.canada.ca/index-en.html#/

Cruden, R. W. (1966). Birds as agents of long-distance dispersal for disjunct plant groups of the temperate Western Hemisphere. Evolution, 20(4), 517-534. https://doi.org/10.2307/2406587

De Coster, W., D'Hert, S., Schultz, D. T., Crutz, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666-2669. https://doi.org/10.1093/bioinformatics/bty149

Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A rapid DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1, 19-21. https://doi.org/10.1007/BF02712670

Dohm, J. C., Lange, C., Holtgräwe, D., Sörensen, T. R., Borchardt, D., Schulz, B., Lehrach, H., Weisshaar, B., & Himmelbauer, H. (2012). Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris). The Plant Journal, 70(3), 528-540. https://doi.org/10.1111/j.1365-313X.2011.04898.x

Eisen, J. A., & Fraser, C. M. (2003). Phylogenomics: Intersection of evolution and genomics. Science, 300(5626), 1706-1707. https://doi.org/10.1126/science.1086292

Felsenstein, J. (1989). PHYLIP- Phylogeny Inference Package (version 3.57c). Cladistics, 5(2), 164-166.

Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. PNAS, 117(17), 9451-9457. https://doi.org/10.1073/pnas.1921046117

Fuentes-Bazan, S., Mansion, G., & Borsch, T. (2012). Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiacae). Molecular Phylogenetics and Evolution, 62, 359-374. https://doi.org/10.1016/j.ympev.2011.10.006

Gavrilets, S., & Losos, J. B. (2009). Adaptive radiation: Contrasting theory with data. Science, 323(5915), 732-737. https://doi.org/10.1126/science.1157966

Giusti, L. (1970). El género Chenopodium (In Spanish) In Argentina: I. Números de exaploidy. Darwiniana, 16(1/2), 98-105.

Haas, B. J., Delcher, A. L., Wortman, J. R., & Salzberg, S. L. (2004). DAGchainer: A tool for mining segmental genome duplications and synteny. Bioinformatics, 20(18), 3643-3646. https://doi.org/10.1093/bioinformatics/bth397

Heath, T. A., Hedtke, S. M., & Hillis, D. M. (2008). Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics & Evolution, 46(3), 239-257. https://www.jse.ac.cn/EN/Y2008/V46/I3/239

Holt, C., & Yandell, M. (2011). MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics, 12, 491. https://doi.org/10.1186/1471-2105-12-491

Hunt, S. P., Jarvis, D. E., Larsen, D. J., Mosyakin, S. L., Kolano, B. A., Jackson, E. W., Martin, S. L., Jellen, E. N., & Maughan, P. J. (2020). A chromosome-scale assembly of the garden orach (Atriplex hortensis L.) genome using Oxford nanopore sequencing. Frontiers in Plant Science, 11, 624. https://doi.org/10.3389/fpls.2020.00624

Huson, D. H. (1998). SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics, 14(1), 68-73. https://doi.org/10.1093/bioinformatics/14.1.68

Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J. A., Ohyanagi, H., Mineta, K., Michell, C. T., Saber, N., Kharbatia, N. M., Rupper, R. R., Sharp, A. R., Dally, N., Boughton, B. A., Woo, Y. H., Gao, G., Schijlen, E. G. W. M., Guo, X., … Tester, M. (2017). The genome of Chenopodium quinoa. Nature, 542, 307-312. https://doi.org/10.1038/nature21370

Jarvis, D. E., Sproul, J. S., Navarro-Dominguez, B., Krak, K., Jaggi, K., Huang, Y. F., Huang, T. Y., Lin, T. C., Jellen, E. N., & Maughan, P. J. (2022). Chromosome-scale assembly of the exaploidy Taiwanese goosefoot ‘djulis’ (Chenopodium formosanum). Genome Biology and Evolution, 14(8), 1-7. https://doi.org/10.1093/gbe/evac120

Jellen, E. N., Jarvis, D. E., Hunt, S. P., Mangelson, H. H., & Maughan, P. J. (2019). New seed collections of North American pitseed goosefoot (Chenopodium berlandieri) and efforts to identify its diploid ancestors through whole-genome sequencing. Ciencia e Investigación Agraria, 46(2), 187-196. https://doi.org/10.7764/rcia.v46i2.2150

Kamal, N., Renhuldt, N. T., Bentzer, J., Gundlach, H., Haberer, G., Juhasz, A., Lux, T., Bose, U., Tye-Din, J. A., Lang, D., van Gessel, N., Reski, R., Fu, Y.-B., Spegel, P., Ceplitis, A., Himmelbach, A., Waters, A. J., Bekele, W. A., Colgrave, M. L., … Sirijovski, N. (2022). The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 606, 113-119. https://doi.org/10.1038/s41586-022-04732-y

Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transformation. Nucleic Acids Research, 30(14), 3059-3066. https://doi.org/10.1093/nar/gkf426

Khoury, C. K., Carver, D., Greene, S. L., Williams, K. A., Achicanoy, H. A., Schori, M., León, B., Wiersema, J. H., & Frances, A. (2020). Crop wild relatives of the United States require urgent conservation action. Proceedings of the National Academy of Sciences of the United States of America, 117(52), 33351-33357. https://doi.org/10.1073/pnas.2007029117

Kolano, B., Gardunia, B. W., Michalska, M., Bonifacio, A., Fairbanks, D., Maughan, P. J., Coleman, C. E., Stevens, M. R., Jellen, E. N., & Maluszynska, J. (2011). Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome, 54, 710-717. https://doi.org/10.1139/G11-035

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 27(5), 722-736. https://doi.org/10.1101/gr.215087.116

Kueck, P. (2017). AliCUT v2.31. https://github.com/PatrickKueck/AliCUT

Kueck, P., & Longo, G. C. (2014). FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology, 11, 81. https://doi.org/10.1186/s12983-014-0081-x

Laetsch, D. R., & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies. F1000Research, 6, 1287. https://doi.org/10.12688/f1000research.12232.1

Lanfear, R., Schalamun, M., Kainer, D., Wang, W., & Schwessinger, B. (2018). MinIONQC: Fast and simple quality control for MinION sequencing data. Bioinformatics, 35(3), 523-525. https://doi.org/10.1093/bioinformatics/bty654

Lee, T., Guo, H., Wang, X., Kim, C., & Paterson, A. H. (2014). SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics, 15, 162. https://doi.org/10.1186/1471-2164-15-162

Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(15), 2078-2079. https://doi.org/10.1093/bioinformatics/bpt352

Mandák, B., Krak, K., Vít, P., Lomonosova, M. N., Belyayev, A., Habibi, F., Wang, L., Douda, J., & Štorhová, H. (2018). Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers. Molecular Phylogenetics and Evolution, 129, 189-201. https://doi.org/10.1016/j.ympev.2018.08.016

Mandák, B., Krak, K., Vit, P., Pavlikova, Z., Lomonosova, M. N., Habibi, F., Wang, L., Jellen, E. N., & Douda, J. (2016). How genome size variation is linked with evolution within Chenopodium sensu lato. Perspectives in Plant Ecology, Evolution and Systematics, 23, 18-32. https://doi.org/10.1016/j.ppees.2016.09.004

Mangelson, H., Jarvis, D. E., Mollinedo, P., Rollano-Penaloza, O. M., Palma-Encinas, V. D., Gomez-Pando, L. R., Jellen, E. N., & Maughan, P. J. (2019). The genome of Chenopodium pallidicaule: An emerging Andean super grain. Applications in Plant Sciences, 7(11), e11300. https://doi.org/10.1002/aps3.11300

Maravilla, A. J., Rosato, M., & Rosselló, J. A. (2021). Interstitial telomeric-like repeats (ITR) in seed plants as assessed by molecular cytogenetic techniques: A review. Plants, 10, 2541. https://doi.org/10.3390/plants10112541

Maughan, P. J., Chaney, L., Lightfoot, D. J., Cox, B. J., Tester, M., Jellen, E. N., & Jarvis, D. E. (2019). Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.). Scientific Reports, 9, 185. https://doi.org/10.1038/s41598-018-36693-6

Misof, B., & Misof, K. (2009). A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: A more objective means of data exclusion. Systematic Biology, 58(1), 21-34. https://doi.org/10.1093/sysbio/syp006

Mosyakin, S. L., & Clemants, S. E. (1996). New infrageneric taxa and combinations in Chenopodium L. (Chenopodiaceae). Novon: A Journal for Botanical Nomenclature, 6(4), 398-403. https://doi.org/10.2307/3392049

Mosyakin, S. L., & Mandák, B. (2020). Chenopodium ucrainicum (Chenopodiaceae/Amaranthaceae sensu APG), a new diploid species: A morphological description and pictoral guide. Plant Taxonomy, Geography and Floristics, 77(4), 237-248.

Native Plant Trust. (2023). Go botany. https://gobotany.nativeplanttrust.org

Nature Serve. (2023). Nature serve explorer. https://explorer.natureserve.org

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274. https://doi.org/10.1093/molbev/msu300

Page, J. T., Liechty, Z. S., Huynh, M. D., & Udall, J. A. (2014). BamBam: Genome sequence analysis tools for biologists. BMC Research Notes, 7, 829. https://doi.org/10.1186/1756-0500-7-829

Rambaut, A. (2010). FigTree v1.3.1. Institute of Evolutionary Biology. University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/

Richards, E. J., & Ausubel, F. M. (1988). Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell, 53, 127-136. https://doi.org/10.1016/0092-8674(88)90494-1

Schluter, D. (1996). Ecological causes of adaptive radiation. The American Naturalist, 148, S40-S64. https://doi.org/10.1086/285901

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212. https://doi.org/10.1093/bioinformatics/btv351

Smit, A. F. A., Hubley, R., & Green, P. (2013). RepeatMasker Open-4.0. http://www.repeatmasker.org

Standley, P. C. (1916). Chenopodiaceae. In North American flora (Vol. 21, pp. 1-93). The New York Botanical Garden.

Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33, W465-W467. https://doi.org/10.1093/nar/gki458

Štorchová, H., Drabešová, J., Cháb, D., Kolár, J., & Jellen, E. N. (2015). The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genetic Resources and Crop Evolution, 62(6), 913-925. https://doi.org/10.1007/s10722-014-0200-8

Subbarao, G. V., Johansen, C., Slinkard, A. E., Rao, R. C. N., Saxena, N. P., Chauhan, Y. S., & Lawn, R. J. (1995). Strategies for improving drought resistance in grain legumes. Critical Reviews in Plant Sciences, 14(6), 469-523. https://doi.org/10.1080/07352689509701933

Subedi, M., Neff, E., & Davis, T. M. (2021). Developing Chenopodium ficifolium as a potential B genome diploid model system for genetic characterization and improvement of allotetraploid quinoa (Chenopodium quinoa). BMC Plant Biology, 21, 490. https://doi.org/10.1186/s12870-021-03270-5

The 100 Tomato Genome Sequencing Consortium, Aflitos, S., Schijlen, E., de Jong, H., de Ridder, D., Smit, S., Finkers, R., Wang, J., Zhang, G., Li, N., Mao, L., Bakker, F., Dirks, R., Breit, T., Gravendeel, B., Huits, H., Struss, D., Swanson-Wagner, R., van Leeuwen, H., … Peters, S. (2014). Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. The Plant Journal, 80, 136-148. https://doi.org/10.1111/tpj.12616

Todd, J. J., & Vodkin, L. O. (1996). Duplications that express and deletions that restore expression from a chalcone synthase multigene family. The Plant Cell, 8(4), 687-699. https://doi.org/10.1105/tpc.8.4.687

Vaser, R., Sović, I., Nagarajan, N., & Šikić, M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Research, 27(5), 737-746. https://doi.org/10.1101/gr.214270.116

Walsh, B. M., Adhikary, D., Maughan, P. J., Emshwiller, E., & Jellen, E. N. (2015). Chenopodium polyploidy inferences from Salt Overly Sensitive 1 (SOS1) data. American Journal of Botany, 102(4), 533-543. https://doi.org/10.3732/ajb.1400344

Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X., Lee, T., Jin, H., Marler, B., Guo, H., Kissinger, J. C., & Paterson, A. H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7), e49. https://doi.org/10.1093/nar/gkr1293

WCVP. (2022). Chenopodium ficifolium Sm. World checklist of vascular plants, version 2.0. https://wcvp.science.kew.org

Wentland, M. J. (1965). The effect of photoperiod on the seed dormancy of Chenopodium album. [Doctoral dissertation, University of Wisconsin]. Madison ProQuest Dissertations Publishing. https://www.proquest.com/dissertations-theses/effect-photoperiod-on-seed-dormancy-chenopodium/docview/302183605/

Wick, R. R. (2017). Porechop v0.2.4. https://github.com/rrwick/Porechop

Wilson, H. D. (1980). Artificial hybridization among species of Chenopodium sect. Chenopodium. Systematic Botany, 5(3), 253-263. https://doi.org/10.2307/2418372

Wilson, H. D., & Heiser, C. B. (1979). The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. American Journal of Botany, 66(2), 198-206. https://doi.org/10.1002/j.1537-2197.1979.tb06215.x

Wilson, H., & Manhart, J. (1993). Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theoretical and Applied Genetics, 86, 642-648. https://doi.org/10.1007/BF00838721

Wongsriphuek, C., Dugger, B. D., & Bartuszevige, A. M. (2008). Dispersal of wetland plant seeds by mallards: Influence of gut passage on recovery, retention, and germination. Wetlands, 28(2), 290-299. https://doi.org/10.1672/07-101.1

Wu, G. (2015). Nutritional properties of quinoa. In K. Murphy & J. Matanguihan (Eds.), Quinoa: improvement and sustainable production (pp. 193-210) John Wiley & Sons, Inc. https://doi.org/10.1002/9781118628041.ch11

Xie, M., Chung, C. Y., Li, M., Wong, F., Wang, X., Liu, A., Wang, Z., Leung, A. K., Wong, T., Tong, S., Xiao, Z., Fan, K., Ng, M., Qi, X., Yang, L., Deng, T., He, L., Chen, L., Fu, A., … Lam, H. T. (2019). A reference-grade wild soybean genome. Nature Communications, 10, 1216. https://doi.org/10.1038/s41467-019-09142-9

Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S., & Schwember, A. R. (2014). Breeding quinoa (Chenopodium quinoa Willd.): Potential and perspectives. Molecular Breeding, 34, 13-30. https://doi.org/10.1007/s11032-014-0023-5

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium

. 2025 Mar ; 18 (1) : e70010.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...