Genome assembly of a diversity panel of Chenopodium quinoa

. 2024 Dec 18 ; 11 (1) : 1366. [epub] 20241218

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39695301
Odkazy

PubMed 39695301
PubMed Central PMC11655568
DOI 10.1038/s41597-024-04200-4
PII: 10.1038/s41597-024-04200-4
Knihovny.cz E-zdroje

Quinoa (Chenopodium quinoa) is an important crop for the future challenges of food and nutrient security. Deep characterization of quinoa diversity is needed to support the agronomic improvement and adaptation of quinoa as its worldwide cultivation expands. In this study, we report the construction of chromosome-scale genome assemblies of eight quinoa accessions covering the range of phenotypic and genetic diversity of both lowland and highland quinoas. The assemblies were produced from a combination of PacBio HiFi reads and Bionano Saphyr optical maps, with total assembly sizes averaging 1.28 Gb with a mean N50 of 71.1 Mb. Between 43,733 and 48,564 gene models were predicted for the eight new quinoa genomes, and on average, 66% of each quinoa genome was classified as repetitive sequences. Alignment between the eight genome assemblies allowed the identification of structural rearrangements including inversions, translocations, and duplications. These eight novel quinoa genome assemblies provide a resource for association genetics, comparative genomics, and pan-genome analyses for the discovery of genetic components and variations underlying agriculturally important traits.

Zobrazit více v PubMed

Alandia, G., Rodriguez, J., Jacobsen, S.-E., Bazile, D. & Condori, B. Global expansion of quinoa and challenges for the Andean region. Global Food Security26, 100429 (2020).

Vavilov, N. I. & Dorofeev, V. F. Origin and geography of cultivated plants. Cambridge University Press (1992).

Jacobsen, S.-E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food reviews international19, 167–177 (2003).

Rojas, W., Alandia, G., Irigoyen, J., Blajos, J. & Santivañez, T. Quinoa, an ancient crop to contribute to world food security. Santiago, Chile: FAO, Oficina Regional para America Latina y el Caribe (2011).

Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S.-E. & Schwember, A. R. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding34, 13–30 (2014).

Murphy, K. M. et al. Quinoa breeding and genomics. Plant breeding reviews42, 257–320 (2018).

Christensen, S. A. et al. Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genetic Resources5, 82–95 (2007).

Rojas, W. et al. State of the Art Report on Quinoa around the World in 2013. Food and Agriculture Organization of the United Nations, 56–82 (2015).

Gandarillas, H. La quinua (Chenopodium quinoa Willd.): Botánica. La Quinua y la Kañiwa cultivos andinos. Bogota: CIID-IICA, 20–44 (1979).

Tapia, M., Mujica, S. & Canahua, A. A1–A8. Puno, Peru: Proyecto PISCA/UNTA/IBTA/IICA/CIID (1980).

Bertero, H. D., De la Vega, A., Correa, G., Jacobsen, S. & Mujica, A. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field crops research89, 299–318 (2004).

Curti, R. N. & Bertero, H. D. Botanical context for domestication in South America. The Quinoa Genome, 13–31 (2021).

Wilson, H. D. Quinua biosystematics I: domesticated populations. Economic Botany42, 461–477 (1988).

Yasui, Y. et al. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Research23, 535–546 (2016). PubMed PMC

Jarvis, D. E. et al. The genome of Chenopodium quinoa. Nature542, 307–312 (2017). PubMed

Zou, C. et al. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research27, 1327–1340 (2017). PubMed PMC

Bodrug-Schepers, A., Stralis-Pavese, N., Buerstmayr, H., Dohm, J. C. & Himmelbauer, H. Quinoa genome assembly employing genomic variation for guided scaffolding. Theoretical and Applied Genetics134, 3577–3594 (2021). PubMed PMC

Grimberg, Å. et al. Transcriptional Regulation of Quinoa Seed Quality: Identification of Novel Candidate Genetic Markers for Increased Protein Content. Frontiers in Plant Science13 (2022). PubMed PMC

Golicz, A. A., Steinfort, U., Arya, H., Singh, M. B. & Bhalla, P. L. Analysis of the quinoa genome reveals conservation and divergence of the flowering pathways. Functional & Integrative Genomics20, 245–258 (2020). PubMed PMC

Mizuno, N. et al. The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Research27 (2020). PubMed PMC

Li, K. et al. Genome-wide identification, phylogenetic analysis, and expression profiles of trihelix transcription factor family genes in quinoa (Chenopodium quinoa Willd.) under abiotic stress conditions. BMC Genomics23, 499 (2022). PubMed PMC

Shi, P. & Gu, M. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC Plant Biology20, 568 (2020). PubMed PMC

Ren, Y. et al. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Quinoa (Chenopodium quinoa). BMC Genomics23, 773 (2022). PubMed PMC

Zhu, X., Wang, B., Wang, X. & Wei, X. Genome-wide identification, structural analysis and expression profiles of short internodes related sequence gene family in quinoa. Frontiers in Genetics13 (2022). PubMed PMC

Colque-Little, C. et al. Genetic variation for tolerance to the downy mildew pathogen Peronospora variabilis in genetic resources of quinoa (Chenopodium quinoa). BMC Plant Biology21, 41 (2021). PubMed PMC

Rey, E. et al. A chromosome-scale assembly of the quinoa genome provides insights into the structure and dynamics of its subgenomes. Commun Biol6 (2023). PubMed PMC

Maldonado-Taipe, N., Barbier, F., Schmid, K., Jung, C. & Emrani, N. High-density mapping of quantitative trait loci controlling agronomically important traits in quinoa (Chenopodium quinoa willd.). Frontiers in plant science13, 916067 (2022). PubMed PMC

Patiranage, D. S. et al. Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history. Elife11, e66873 (2022). PubMed PMC

Patiranage, D. S. et al. Haplotype variations of major flowering time genes in quinoa unveil their role in the adaptation to different environmental conditions. Plant, Cell & Environment44, 2565–2579 (2021). PubMed

Emrani, N. et al. An efficient method to produce segregating populations in quinoa (Chenopodium quinoa). Plant Breeding139, 1190–1200 (2020).

Maldonado‐Taipe, N., Rey, E., Tester, M., Jung, C. & Emrani, N. Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development. Plant, Cell & Environment (2024). PubMed

Rahman, H. et al. Mining genomic regions associated with agronomic and biochemical traits in quinoa through GWAS. Scientific Reports14, 9205 (2024). PubMed PMC

Stanschewski, C. S. Domestication and adaptation of Chenopodium quinoa for marginal environments Doctoral dissertation thesis, King Abdullah University of Science and Technology (2023).

Dolezel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc2, 2233–2244 (2007). PubMed

Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia plantarum85, 625–631 (1992).

Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry A51, 127–128, 10.1002/cyto.a.10013 (2003). PubMed

Kolano, B., Siwinska, D., Gomez Pando, L., Szymanowska-Pulka, J. & Maluszynska, J. Genome size variation in Chenopodium quinoa (Chenopodiaceae). Plant Systematics and Evolution298, 251–255 (2012).

Palomino, G., Hernández, L. T. & de la Cruz Torres, E. Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttalliae. Euphytica164, 221–230 (2008).

Sosa‐Zuniga, V., Brito, V., Fuentes, F. & Steinfort, U. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology171, 117–124 (2017).

Stanschewski, C. S. et al. Quinoa phenotyping methodologies: An international consensus. Plants10, 1759 (2021). PubMed PMC

Driguez, P. et al. LeafGo: Leaf to Genome, a quick workflow to produce high-quality de novo plant genomes using long-read sequencing technology. Genome Biology22, 256 (2021). PubMed PMC

Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nature Biotechnology40, 1332–1335 (2022). PubMed PMC

Pérez-Wohlfeil, E., Diaz-del-Pino, S. & Trelles, O. Ultra-fast genome comparison for large-scale genomic experiments. Scientific Reports9, 10274 (2019). PubMed PMC

Alonge, M. et al. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biology23, 258 (2022). PubMed PMC

Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant physiology176, 1410–1422 (2018). PubMed PMC

Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic acids research46, e126–e126 (2018). PubMed PMC

Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Gene prediction: methods and protocols, 227-245 (2019). PubMed

Ou, S. et al. Differences in activity and stability drive transposable element variation in tropical and temperate maize. bioRxiv, 2022.2010. 2009.511471 (2022). PubMed PMC

Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PloS one6, e16526 (2011). PubMed PMC

Quesneville, H. et al. Combined evidence annotation of transposable elements in genome sequences. PLoS computational biology1, e22 (2005). PubMed PMC

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). PubMed PMC

Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology20, 278 (2019). PubMed PMC

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol215, 403–410 (1990). PubMed

Shumate, A. & Salzberg, S. L. Liftoff: accurate mapping of gene annotations. Bioinformatics37, 1639–1643 (2021). PubMed PMC

Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Res9 (2020). PubMed PMC

Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nature Methods12, 59–60 (2015). PubMed

Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods18, 366–368 (2021). PubMed PMC

Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics30, 1236–1240 (2014). PubMed PMC

Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology20, 277 (2019). PubMed PMC

Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics38, 2922–2926 (2022). PubMed PMC

NCBI Sequence Read Archivehttps://identifiers.org/ncbi/insdc.sra:SRP461962 (2024).

European Nucleotide Archivehttps://identifiers.org/ebi/biosample:SAMEA114426149 (2024).

European Nucleotide Archivehttps://identifiers.org/ebi/biosample:SAMEA114426156 (2024).

European Nucleotide Archivehttps://identifiers.org/ebi/biosample:SAMEA114426151 (2024).

European Nucleotide Archivehttps://identifiers.org/ebi/biosample:SAMEA114426154 (2024).

European Nucleotide Archivehttps://identifiers.org/ebi/biosample:SAMEA114426155 (2024).

European Nucleotide Archivehttps://identifiers.org/ebi/biosample:SAMEA114426150 (2024).

European Nucleotide Archivehttps://identifiers.org/ebi/biosample:SAMEA114426152 (2024).

European Nucleotide Archivehttps://identifiers.org/ebi/biosample:SAMEA114426153 (2024).

NCBI Assemblyhttps://identifiers.org/ncbi/insdc.gca:GCA_040571405.1 (2024).

NCBI Assemblyhttps://identifiers.org/ncbi/insdc.gca:GCA_040571485.1 (2024).

NCBI Assemblyhttps://identifiers.org/ncbi/insdc.gca:GCA_040571585.1 (2024).

NCBI Assemblyhttps://identifiers.org/ncbi/insdc.gca:GCA_040571465.1 (2024).

NCBI Assemblyhttps://identifiers.org/ncbi/insdc.gca:GCA_040571445.1 (2024).

NCBI Assemblyhttps://identifiers.org/ncbi/insdc.gca:GCA_040571505.1 (2024).

NCBI Assemblyhttps://identifiers.org/ncbi/insdc.gca:GCA_040571545.1 (2024).

NCBI Assemblyhttps://identifiers.org/ncbi/insdc.gca:GCA_040571565.1 (2024).

Rey, E. et al. Data from: Genome assembly of a diversity panel of Chenopodium quinoa. Dryad Digital Repository. 10.5061/dryad.zkh1893jj (2024). PubMed PMC

Brown, M., González De la Rosa, P. M. & Mark, B. A Telomere Identification Toolkit. (Zenodo, 2023).

Nevers, Y. et al. Quality assessment of gene repertoire annotations with OMArk. Nature Biotechnology, 1–10 (2024). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace