Genome assembly of a diversity panel of Chenopodium quinoa
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články
PubMed
39695301
PubMed Central
PMC11655568
DOI
10.1038/s41597-024-04200-4
PII: 10.1038/s41597-024-04200-4
Knihovny.cz E-zdroje
- MeSH
- Chenopodium quinoa * genetika MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
Quinoa (Chenopodium quinoa) is an important crop for the future challenges of food and nutrient security. Deep characterization of quinoa diversity is needed to support the agronomic improvement and adaptation of quinoa as its worldwide cultivation expands. In this study, we report the construction of chromosome-scale genome assemblies of eight quinoa accessions covering the range of phenotypic and genetic diversity of both lowland and highland quinoas. The assemblies were produced from a combination of PacBio HiFi reads and Bionano Saphyr optical maps, with total assembly sizes averaging 1.28 Gb with a mean N50 of 71.1 Mb. Between 43,733 and 48,564 gene models were predicted for the eight new quinoa genomes, and on average, 66% of each quinoa genome was classified as repetitive sequences. Alignment between the eight genome assemblies allowed the identification of structural rearrangements including inversions, translocations, and duplications. These eight novel quinoa genome assemblies provide a resource for association genetics, comparative genomics, and pan-genome analyses for the discovery of genetic components and variations underlying agriculturally important traits.
Center for Desert Agriculture KAUST Thuwal Saudi Arabia
Fdo LA Esperanza sn Perquenco Chile
INRAE CNRGV French Plant Genomic Resource Center F 31320 Castanet Tolosan France
Zobrazit více v PubMed
Alandia, G., Rodriguez, J., Jacobsen, S.-E., Bazile, D. & Condori, B. Global expansion of quinoa and challenges for the Andean region. DOI
Vavilov, N. I. & Dorofeev, V. F.
Jacobsen, S.-E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). DOI
Rojas, W., Alandia, G., Irigoyen, J., Blajos, J. & Santivañez, T. Quinoa, an ancient crop to contribute to world food security.
Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S.-E. & Schwember, A. R. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. DOI
Murphy, K. M. DOI
Christensen, S. A. DOI
Rojas, W.
Gandarillas, H. La quinua (Chenopodium quinoa Willd.): Botánica.
Tapia, M., Mujica, S. & Canahua, A. A1–A8. Puno, Peru: Proyecto PISCA/UNTA/IBTA/IICA/CIID (1980).
Bertero, H. D., De la Vega, A., Correa, G., Jacobsen, S. & Mujica, A. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. DOI
Curti, R. N. & Bertero, H. D. Botanical context for domestication in South America.
Wilson, H. D. Quinua biosystematics I: domesticated populations. DOI
Bodrug-Schepers, A., Stralis-Pavese, N., Buerstmayr, H., Dohm, J. C. & Himmelbauer, H. Quinoa genome assembly employing genomic variation for guided scaffolding. PubMed DOI PMC
Golicz, A. A., Steinfort, U., Arya, H., Singh, M. B. & Bhalla, P. L. Analysis of the quinoa genome reveals conservation and divergence of the flowering pathways. PubMed DOI PMC
Shi, P. & Gu, M. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. PubMed DOI PMC
Zhu, X., Wang, B., Wang, X. & Wei, X. Genome-wide identification, structural analysis and expression profiles of short internodes related sequence gene family in quinoa. PubMed PMC
Colque-Little, C. PubMed DOI PMC
Maldonado-Taipe, N., Barbier, F., Schmid, K., Jung, C. & Emrani, N. High-density mapping of quantitative trait loci controlling agronomically important traits in quinoa (Chenopodium quinoa willd.). PubMed DOI PMC
Patiranage, D. S. PubMed DOI PMC
Emrani, N. DOI
Maldonado‐Taipe, N., Rey, E., Tester, M., Jung, C. & Emrani, N. Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development. PubMed
Stanschewski, C. S.
Dolezel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. PubMed DOI
Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. DOI
Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. PubMed DOI
Kolano, B., Siwinska, D., Gomez Pando, L., Szymanowska-Pulka, J. & Maluszynska, J. Genome size variation in Chenopodium quinoa (Chenopodiaceae). DOI
Palomino, G., Hernández, L. T. & de la Cruz Torres, E. Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttalliae. DOI
Sosa‐Zuniga, V., Brito, V., Fuentes, F. & Steinfort, U. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. DOI
Stanschewski, C. S. PubMed DOI PMC
Pérez-Wohlfeil, E., Diaz-del-Pino, S. & Trelles, O. Ultra-fast genome comparison for large-scale genomic experiments. PubMed DOI PMC
Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. PubMed DOI PMC
Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). PubMed PMC
Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. PubMed
Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PubMed DOI PMC
Quesneville, H. PubMed DOI PMC
Li, H. Minimap2: pairwise alignment for nucleotide sequences. PubMed DOI PMC
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. PubMed DOI
Shumate, A. & Salzberg, S. L. Liftoff: accurate mapping of gene annotations. PubMed DOI PMC
Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare. PubMed PMC
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. PubMed DOI
Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. PubMed DOI PMC
Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. PubMed DOI PMC
Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements between multiple genomes. PubMed DOI PMC
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
Brown, M., González De la Rosa, P. M. & Mark, B. A Telomere Identification Toolkit. (Zenodo, 2023).
A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium