Demographic variation in space and time: implications for conservation targeting

. 2022 Mar ; 9 (3) : 211671. [epub] 20220330

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35360351

The dynamics of wild populations are governed by demographic rates which vary spatially and/or temporally in response to environmental conditions. Conservation actions for widespread but declining populations could potentially exploit this variation to target locations (or years) in which rates are low, but only if consistent spatial or temporal variation in demographic rates occurs. Using long-term demographic data for wild birds across Europe, we show that productivity tends to vary between sites (consistently across years), while survival rates tend to vary between years (consistently across sites), and that spatial synchrony is more common in survival than productivity. Identifying the conditions associated with low demographic rates could therefore facilitate spatially targeted actions to improve productivity or (less feasibly) forecasting and temporally targeting actions to boost survival. Decomposing spatio-temporal variation in demography can thus be a powerful tool for informing conservation policy and for revealing appropriate scales for actions to influence demographic rates.

Zobrazit více v PubMed

Díaz SM, et al. . 2019. The global assessment report on biodiversity and ecosystem services: summary for policy makers. See https://zenodo.org/record/3553579#.YkFxei8w1B0.

Hayhow DB, et al. 2019. State of Nature 2019. State Nat. Partnership. See https://nbn.org/wp-content/uploads/2019/09/State-of-Nature-2019-UK-full-report.pdf.

Butler SJ, Norris K. 2013. Functional space and the population dynamics of birds in agro-ecosystems. Agric. Ecosyst. Environ. 164, 200-208. (10.1016/j.agee.2012.11.001) DOI

Vickery JA, Bradbury RB, Henderson IG, Eaton MA, Grice PV. 2004. The role of agri-environment schemes and farm management practices in reversing the decline of farmland birds in England. Biol. Conserv. 119, 19-39. (10.1016/j.biocon.2003.06.004) DOI

Pe'er G, et al. . 2014. EU agricultural reform fails on biodiversity. Science 344, 1090-1092. (10.1126/science.1253425) PubMed DOI

Laidlaw RA, Smart J, Smart MA, Gill JA. 2017. Scenarios of habitat management options to reduce predator impacts on nesting waders. J. Appl. Ecol. 54, 1219-1229. (10.1111/1365-2664.12838) DOI

Siriwardena GM, Stevens DK, Anderson GQA, Vickery JA, Calbrade NA, Dodd S. 2007. The effect of supplementary winter seed food on breeding populations of farmland birds: evidence from two large-scale experiments. J. Appl. Ecol. 44, 920-932. (10.1111/j.1365-2664.2007.01339.x) DOI

Baker DJ, Freeman SN, Grice PV, Siriwardena GM. 2012. Landscape-scale responses of birds to agri-environment management: a test of the English Environmental Stewardship scheme. J. Appl. Ecol. 49, 871-882. (10.1111/j.1365-2664.2012.02161.x) DOI

Walker LK, Morris AJ, Cristinacce A, Dadam D, Grice PV, Peach WJ. 2018. Effects of higher-tier agri-environment scheme on the abundance of priority farmland birds. Anim. Conserv. 21, 183-192. (10.1111/acv.12386) DOI

Pearce-Higgins JW, Dennis P, Whittingham MJ, Yalden DW. 2010. Impacts of climate on prey abundance account for fluctuations in a population of a northern wader at the southern edge of its range. Glob. Chang. Biol. 16, 12-23. (10.1111/j.1365-2486.2009.01883.x) DOI

Eglington SM, Julliard R, Gargallo G, Jeugd HP, Pearce-Higgins JW, Baillie SR, Robinson RA. 2015. Latitudinal gradients in the productivity of European migrant warblers have not shifted northwards during a period of climate change. Glob. Ecol. Biogeogr. 24, 427-436. (10.1111/geb.12267) DOI

Hanzelka J, Horká P, Reif J. 2019. Spatial gradients in country-level population trends of European birds. Divers. Distrib. 25, 1527-1536. (10.1111/ddi.12945) DOI

Johnston A, Robinson RA, Gargallo G, Julliard R, van der Jeugd H, Baillie SR. 2016. Survival of Afro-Palaearctic passerine migrants in Western Europe and the impacts of seasonal weather variables. Ibis 158, 465-480. (10.1111/ibi.12366) DOI

Robinson RA, Morrison CA, Baillie SR. 2014. Integrating demographic data: towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5, 1361-1372. (10.1111/2041-210X.12204) DOI

Saracco JF, Desante DF, Kaschube DR. 2008. Assessing landbird monitoring programs and demographic causes of population trends. J. Wildl. Manage. 72, 1665-1673. (10.2193/2008-129) DOI

Robinson RA, Julliard R, Saracco JF. 2009. Constant effort: studying avian population processes using standardised ringing. Ring. Migr. 24, 199-204. (10.1080/03078698.2009.9674392) DOI

Paradis E, Baillie SR, Sutherland WJ, Gregory RD. 1999. Dispersal and spatial scale affect synchrony in spatial population dynamics. Ecol. Lett. 2, 114-120. (10.1046/j.1461-0248.1999.22060.x) DOI

Plummer M. 2003. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proc. 3rd Int. Work. Distrib. Stat. Comput. (DSC 2003), 20–22 March 2003 (eds Hornik K, Leisch F, Zeileis A), pp. 1–10.

R Core Development Team. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Morrison C. 2021. Demographic variation in space and time: implications for conservation targeting. See https://osf.io/pf2t4/.

Grosbois V, Harris MP, Anker-Nilssen T, McCleery RH, Shaw DN, Morgan BJT, Gimenez O. 2009. Modeling survival at multi-population scales using mark–recapture data. Ecology 90, 2922-2932. (10.1890/08-1657.1) PubMed DOI

Schaub M, von Hirschheydt J, Grüebler MU. 2015. Differential contribution of demographic rate synchrony to population synchrony in barn swallows. J. Anim. Ecol. 84, 1530-1541. (10.1111/1365-2656.12423) PubMed DOI

Donald PF, Green RE, Heath MF. 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proc. R. Soc. B 268, 25-29. (10.1098/rspb.2000.1325) PubMed DOI PMC

Jørgensen PS, et al. 2016. Continent-scale global change attribution in European birds-combining annual and decadal time scales. Glob. Chang. Biol. 22, 530-543. (10.1111/gcb.13097) PubMed DOI

Morrison CA, et al. 2021. Covariation in population trends and demography reveals targets for conservation action. Proc. R. Soc. B 288, 20202955. (10.1098/rspb.2020.2955) PubMed DOI PMC

Sanderson FJ, Kucharz M, Jobda M, Donald PF. 2013. Impacts of agricultural intensification and abandonment on farmland birds in Poland following EU accession. Agric. Ecosyst. Environ. 168, 16-24. (10.1016/j.agee.2013.01.015) DOI

Whittingham MJ, Evans KL. 2004. The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis 146, 210-220. (10.1111/j.1474-919X.2004.00370.x) DOI

Finch T, Butler SJ, Franco AMA, Cresswell W. 2017. Low migratory connectivity is common in long-distance migrant birds. J. Anim. Ecol. 86, 662-673. (10.1111/1365-2656.12635) PubMed DOI

Robinson RA, Baillie SR, Crick HQP. 2007. Weather-dependent survival: implications of climate change for passerine population processes. Ibis 149, 357-364. (10.1111/j.1474-919X.2006.00648.x) DOI

Morrison CA, Robinson RA, Pearce-Higgins JW. 2016. Winter wren populations show adaptation to local climate. R. Soc. Open Sci. 3, 160250. (10.1098/rsos.160250) PubMed DOI PMC

Peach W, Baillie S, Underhill LES. 1991. Survival of British sedge warblers. Ibis 133, 300-305. (10.1111/j.1474-919X.1991.tb04573.x) DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5901244

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace