In Vitro Comparison of the Bioactivities of Japanese and Bohemian Knotweed Ethanol Extracts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P4-0121
Slovene Research Agency
TJ02000372
Technology Agency of the Czech Republic
PubMed
32365900
PubMed Central
PMC7278624
DOI
10.3390/foods9050544
PII: foods9050544
Knihovny.cz E-zdroje
- Klíčová slova
- anticancer activity, antidiabetic activity, antimicrobial activity, antioxidant activity, cellular antioxidant activity, herbal medicine, polyphenols,
- Publikační typ
- časopisecké články MeSH
Knotweed is a flowering plant that is native to temperate and subtropical regions in the northern hemisphere. We evaluated Japanese (Reynoutria japonica Houtt.) and Bohemian (Fallopia x bohemica) knotweed rhizome and flower ethanol extracts and compared them in terms of their biological activities. The specific polyphenols were identified and quantified using HPLC/DAD, and the antioxidant activity was determined using 2,2-diphenly-1-picrylhydrazyl (DPPH) and cellular antioxidant capacity assays. The anticancer activity was evaluated as the difference between the cytotoxicity to cancer cells compared with control cells. The antimicrobial activity was determined using bacteria and yeast. The antidiabetic activity was tested as the ability of the extracts to inhibit α-amylase. Both rhizome extracts were sources of polyphenols, particularly polydatin and (-)-epicatechin; however, the cellular assay showed the highest antioxidant capacity in the flower extract of F. bohemica. The PaTu cell line was the least sensitive toward all knotweed extracts. The flower extracts of both species were less toxic than the rhizomes. However, the activity of the tested extracts was not specific for cancer cells, indicating a rather toxic mode of action. Furthermore, all used extracts decreased the α-amylase activity, and the rhizome extracts were more effective than the flower extracts. None of the extracts inhibited bacterial growth; however, they inhibited yeast growth. The results confirmed that rhizomes of Reynoutria japonica Houtt. could become a new source of bioactive compounds, which could be used for the co-treatment of diabetes and as antifungal agents.
Zobrazit více v PubMed
Bailey J.P., Conolly A. Prize-winners to pariahs—A history of Japanese knotweed s.l. (Polygonaceae) in the British Isles. Watsonia. 2000;23:93–110.
Murrell C., Gerber E., Krebs C., Parepa M., Schaffner U., Bossdorf O. Invasive Knotweed Affects Native Plants through Allelopathy. Am. J. Bot. 2011;98:38–43. doi: 10.3732/ajb.1000135. PubMed DOI
Strgulc Krajšek S., Jogan N. The genus Fallopia Adans. in Slovenia. Hladnikia. 2011;28:17–40.
Bailey J.P., Bimova K., Mandak B. Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage for the “Battle of the Clones”. Biol. Invasions. 2009;11:1189–1203. doi: 10.1007/s10530-008-9381-4. DOI
Lachowicz S., Oszmiański J. Profile of Bioactive Compounds in the Morphological Parts of Wild Fallopia japonica (Houtt) and Fallopia sachalinensis (F. Schmidt) and Their Antioxidative Activity. Molecules. 2019;24:1436. doi: 10.3390/molecules24071436. PubMed DOI PMC
Yi T., Zhang H., Cai Z. Analysis of rhizoma polygoni cuspidati by HPLC and HPLC-ESI/MS. Phytochem. Anal. 2007;18:387–392. doi: 10.1002/pca.993. PubMed DOI
Wang D.G., Liu W.Y., Chen G.T. A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. J. Pharm. Anal. 2013;3:241–247. doi: 10.1016/j.jpha.2012.12.001. PubMed DOI PMC
Chen H.G., Tuck T., Ji X.H., Zhou X., Kelly G., Cuerrier A., Zhang J.Z. Quality Assessment of Japanese Knotweed (Fallopia japonica) Grown on Prince Edward Island as a Source of Resveratrol. J. Agric. Food Chem. 2013;61:6383–6392. doi: 10.1021/jf4019239. PubMed DOI
Kovarova M., Bartunkova K., Frantik T., Koblihova H., Prchlova K., Vosatka M. Factors influencing the production of stilbenes by the knotweed, Reynoutria × bohemica. BMC Plant Biol. 2010;10:19. doi: 10.1186/1471-2229-10-19. PubMed DOI PMC
Vrchotova N., Sera B., Dadakova E. HPLC and CE analysis of catechins, stilbens and quercetin in flowers and stems of Polygonum Cuspidatum, P. sachalinense and P. x bohemicum. J. Indian Chem. Soc. 2010;87:1267–1272.
Metlicar V., Vovk I., Albreht A. Japanese and Bohemian Knotweeds as Sustainable Sources of Carotenoids. Plants. 2019;8:384. doi: 10.3390/plants8100384. PubMed DOI PMC
Kimura Y., Okuda H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr. 2001;131:1844–1849. doi: 10.1093/jn/131.6.1844. PubMed DOI
Lee C.C., Chen Y.T., Chiu C.C., Liao W.T., Liu Y.C., Wang H.M.D. Polygonum cuspidatum extracts as bioactive antioxidaion, anti-tyrosinase, immune stimulation and anticancer agents. J. Biosci. Bioeng. 2015;119:464–469. doi: 10.1016/j.jbiosc.2014.09.008. PubMed DOI
Shan B., Cai Y.Z., Brooks J.D., Corke H. Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents. Food Chem. 2008;109:530–537. doi: 10.1016/j.foodchem.2007.12.064. DOI
Kumagai H., Kawai Y., Sawano R., Kurihara H., Yamazaki K., Inoue N. Antimicrobial substances from rhizomes of the giant knotweed Polygonum sachalinense against the fish pathogen Photobacterium damselae subsp piscicida. Z. Naturforsch. C. 2005;60:39–44. doi: 10.1515/znc-2005-1-208. PubMed DOI
Zhu X.Y., Wu C.H., Qiu S.H., Yuan X.L., Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: Systematic review and meta-analysis. Nutr. Metab. 2017;14:60. doi: 10.1186/s12986-017-0217-z. PubMed DOI PMC
Grzesik M., Naparlo K., Bartosz G., Sadowska-Bartosz I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018;241:480–492. doi: 10.1016/j.foodchem.2017.08.117. PubMed DOI
Rogelj A. Master’s Thesis. University of Ljubljana; Ljubljana, Slovenia: 2015. Antioxidants and their Efficiency in Different Tissues of Invasive Alien Knotweed Species.
Pogacnik L., Rogelj A., Ulrih N.P. Chemiluminescence Method for Evaluation of Antioxidant Capacities of Different Invasive Knotweed Species. Anal. Lett. 2016;49:350–363. doi: 10.1080/00032719.2014.979361. DOI
Pogačnik L. Bioactive substances from invasive knotweed species. J. EcoAgriTourism. 2020;16:21–25.
Viktorova J., Stranska-Zachariasova M., Fenclova M., Vitek L., Hajslova J., Kren V., Ruml T. Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC
Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Fenclova M., Stranska-Zachariasova M., Vitek L., Hajslova J., et al. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC
Nguyen D., Novakova A., Spurna K., Hricko J., Phung H., Viktorova J., Stranska M., Hajslova J., Ruml T. Antidiabetic Compounds in Stem Juice from Banana. Czech J. Food Sci. 2017;35:407–413. doi: 10.17221/172/2017-cjfs. DOI
Benova B., Adam M., Onderkova K., Kralovsky J., Krajicek M. Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection. J. Sep. Sci. 2008;31:2404–2409. doi: 10.1002/jssc.200800119. PubMed DOI
Vrchotova N., Sera B., Triska J. The stilbene and catechin content of the spring sprouts of Reynoutria species. Acta Chromatogr. 2007;19:21–28.
Ravagnan G., De Filippis A., Carteni M., De Maria S., Cozza V., Petrazzuolo M., Tufano M.A., Donnarumma G. Polydatin, A Natural Precursor of Resveratrol, Induces beta-Defensin Production and Reduces Inflammatory Response. Inflammation. 2013;36:26–34. doi: 10.1007/s10753-012-9516-8. PubMed DOI
Romero-Perez A.I., Ibern-Gomez M., Lamuela-Raventos R.M., de la Torre-Boronat M.C. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 1999;47:1533–1536. doi: 10.1021/jf981024g. PubMed DOI
Frantik T., Kovarova M., Koblihova H., Bartunkova K., Nyvltova Z., Vosatka M. Production of medically valuable stilbenes and emodin in knotweed. Ind. Crops Prod. 2013;50:237–243. doi: 10.1016/j.indcrop.2013.07.017. DOI
Tabart J., Franck T., Kevers C., Pincemail J., Serteyn D., Defraigne J.O., Dornmes J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012;131:1116–1122. doi: 10.1016/j.foodchem.2011.09.076. DOI
Xing J.L., Wang G., Zhang Q.X., Liu X.M., Gu Z.N., Zhang H., Chen Y.Q., Chen W. Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods. PLoS ONE. 2015;10:e0119058. doi: 10.1371/journal.pone.0119058. PubMed DOI PMC
Wolfe K.L., Liu R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI
Bishayee A. Cancer Prevention and Treatment with Resveratrol: From Rodent Studies to Clinical Trials. Cancer Prev. Res. 2009;2:409–418. doi: 10.1158/1940-6207.CAPR-08-0160. PubMed DOI
Zhang L., Ravipati A.S., Koyyalamudi S.R., Jeong S.C., Reddy N., Bartlett J., Smith P.T., de la Cruz M., Monteiro M.C., Melguizo A., et al. Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs. Asian Pac. J. Trop. Med. 2013;6:673–681. doi: 10.1016/S1995-7645(13)60117-0. PubMed DOI