In Vitro Comparison of the Bioactivities of Japanese and Bohemian Knotweed Ethanol Extracts

. 2020 Apr 30 ; 9 (5) : . [epub] 20200430

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32365900

Grantová podpora
P4-0121 Slovene Research Agency
TJ02000372 Technology Agency of the Czech Republic

Knotweed is a flowering plant that is native to temperate and subtropical regions in the northern hemisphere. We evaluated Japanese (Reynoutria japonica Houtt.) and Bohemian (Fallopia x bohemica) knotweed rhizome and flower ethanol extracts and compared them in terms of their biological activities. The specific polyphenols were identified and quantified using HPLC/DAD, and the antioxidant activity was determined using 2,2-diphenly-1-picrylhydrazyl (DPPH) and cellular antioxidant capacity assays. The anticancer activity was evaluated as the difference between the cytotoxicity to cancer cells compared with control cells. The antimicrobial activity was determined using bacteria and yeast. The antidiabetic activity was tested as the ability of the extracts to inhibit α-amylase. Both rhizome extracts were sources of polyphenols, particularly polydatin and (-)-epicatechin; however, the cellular assay showed the highest antioxidant capacity in the flower extract of F. bohemica. The PaTu cell line was the least sensitive toward all knotweed extracts. The flower extracts of both species were less toxic than the rhizomes. However, the activity of the tested extracts was not specific for cancer cells, indicating a rather toxic mode of action. Furthermore, all used extracts decreased the α-amylase activity, and the rhizome extracts were more effective than the flower extracts. None of the extracts inhibited bacterial growth; however, they inhibited yeast growth. The results confirmed that rhizomes of Reynoutria japonica Houtt. could become a new source of bioactive compounds, which could be used for the co-treatment of diabetes and as antifungal agents.

Zobrazit více v PubMed

Bailey J.P., Conolly A. Prize-winners to pariahs—A history of Japanese knotweed s.l. (Polygonaceae) in the British Isles. Watsonia. 2000;23:93–110.

Murrell C., Gerber E., Krebs C., Parepa M., Schaffner U., Bossdorf O. Invasive Knotweed Affects Native Plants through Allelopathy. Am. J. Bot. 2011;98:38–43. doi: 10.3732/ajb.1000135. PubMed DOI

Strgulc Krajšek S., Jogan N. The genus Fallopia Adans. in Slovenia. Hladnikia. 2011;28:17–40.

Bailey J.P., Bimova K., Mandak B. Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage for the “Battle of the Clones”. Biol. Invasions. 2009;11:1189–1203. doi: 10.1007/s10530-008-9381-4. DOI

Lachowicz S., Oszmiański J. Profile of Bioactive Compounds in the Morphological Parts of Wild Fallopia japonica (Houtt) and Fallopia sachalinensis (F. Schmidt) and Their Antioxidative Activity. Molecules. 2019;24:1436. doi: 10.3390/molecules24071436. PubMed DOI PMC

Yi T., Zhang H., Cai Z. Analysis of rhizoma polygoni cuspidati by HPLC and HPLC-ESI/MS. Phytochem. Anal. 2007;18:387–392. doi: 10.1002/pca.993. PubMed DOI

Wang D.G., Liu W.Y., Chen G.T. A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. J. Pharm. Anal. 2013;3:241–247. doi: 10.1016/j.jpha.2012.12.001. PubMed DOI PMC

Chen H.G., Tuck T., Ji X.H., Zhou X., Kelly G., Cuerrier A., Zhang J.Z. Quality Assessment of Japanese Knotweed (Fallopia japonica) Grown on Prince Edward Island as a Source of Resveratrol. J. Agric. Food Chem. 2013;61:6383–6392. doi: 10.1021/jf4019239. PubMed DOI

Kovarova M., Bartunkova K., Frantik T., Koblihova H., Prchlova K., Vosatka M. Factors influencing the production of stilbenes by the knotweed, Reynoutria × bohemica. BMC Plant Biol. 2010;10:19. doi: 10.1186/1471-2229-10-19. PubMed DOI PMC

Vrchotova N., Sera B., Dadakova E. HPLC and CE analysis of catechins, stilbens and quercetin in flowers and stems of Polygonum Cuspidatum, P. sachalinense and P. x bohemicum. J. Indian Chem. Soc. 2010;87:1267–1272.

Metlicar V., Vovk I., Albreht A. Japanese and Bohemian Knotweeds as Sustainable Sources of Carotenoids. Plants. 2019;8:384. doi: 10.3390/plants8100384. PubMed DOI PMC

Kimura Y., Okuda H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr. 2001;131:1844–1849. doi: 10.1093/jn/131.6.1844. PubMed DOI

Lee C.C., Chen Y.T., Chiu C.C., Liao W.T., Liu Y.C., Wang H.M.D. Polygonum cuspidatum extracts as bioactive antioxidaion, anti-tyrosinase, immune stimulation and anticancer agents. J. Biosci. Bioeng. 2015;119:464–469. doi: 10.1016/j.jbiosc.2014.09.008. PubMed DOI

Shan B., Cai Y.Z., Brooks J.D., Corke H. Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents. Food Chem. 2008;109:530–537. doi: 10.1016/j.foodchem.2007.12.064. DOI

Kumagai H., Kawai Y., Sawano R., Kurihara H., Yamazaki K., Inoue N. Antimicrobial substances from rhizomes of the giant knotweed Polygonum sachalinense against the fish pathogen Photobacterium damselae subsp piscicida. Z. Naturforsch. C. 2005;60:39–44. doi: 10.1515/znc-2005-1-208. PubMed DOI

Zhu X.Y., Wu C.H., Qiu S.H., Yuan X.L., Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: Systematic review and meta-analysis. Nutr. Metab. 2017;14:60. doi: 10.1186/s12986-017-0217-z. PubMed DOI PMC

Grzesik M., Naparlo K., Bartosz G., Sadowska-Bartosz I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018;241:480–492. doi: 10.1016/j.foodchem.2017.08.117. PubMed DOI

Rogelj A. Master’s Thesis. University of Ljubljana; Ljubljana, Slovenia: 2015. Antioxidants and their Efficiency in Different Tissues of Invasive Alien Knotweed Species.

Pogacnik L., Rogelj A., Ulrih N.P. Chemiluminescence Method for Evaluation of Antioxidant Capacities of Different Invasive Knotweed Species. Anal. Lett. 2016;49:350–363. doi: 10.1080/00032719.2014.979361. DOI

Pogačnik L. Bioactive substances from invasive knotweed species. J. EcoAgriTourism. 2020;16:21–25.

Viktorova J., Stranska-Zachariasova M., Fenclova M., Vitek L., Hajslova J., Kren V., Ruml T. Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC

Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Fenclova M., Stranska-Zachariasova M., Vitek L., Hajslova J., et al. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC

Nguyen D., Novakova A., Spurna K., Hricko J., Phung H., Viktorova J., Stranska M., Hajslova J., Ruml T. Antidiabetic Compounds in Stem Juice from Banana. Czech J. Food Sci. 2017;35:407–413. doi: 10.17221/172/2017-cjfs. DOI

Benova B., Adam M., Onderkova K., Kralovsky J., Krajicek M. Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection. J. Sep. Sci. 2008;31:2404–2409. doi: 10.1002/jssc.200800119. PubMed DOI

Vrchotova N., Sera B., Triska J. The stilbene and catechin content of the spring sprouts of Reynoutria species. Acta Chromatogr. 2007;19:21–28.

Ravagnan G., De Filippis A., Carteni M., De Maria S., Cozza V., Petrazzuolo M., Tufano M.A., Donnarumma G. Polydatin, A Natural Precursor of Resveratrol, Induces beta-Defensin Production and Reduces Inflammatory Response. Inflammation. 2013;36:26–34. doi: 10.1007/s10753-012-9516-8. PubMed DOI

Romero-Perez A.I., Ibern-Gomez M., Lamuela-Raventos R.M., de la Torre-Boronat M.C. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 1999;47:1533–1536. doi: 10.1021/jf981024g. PubMed DOI

Frantik T., Kovarova M., Koblihova H., Bartunkova K., Nyvltova Z., Vosatka M. Production of medically valuable stilbenes and emodin in knotweed. Ind. Crops Prod. 2013;50:237–243. doi: 10.1016/j.indcrop.2013.07.017. DOI

Tabart J., Franck T., Kevers C., Pincemail J., Serteyn D., Defraigne J.O., Dornmes J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012;131:1116–1122. doi: 10.1016/j.foodchem.2011.09.076. DOI

Xing J.L., Wang G., Zhang Q.X., Liu X.M., Gu Z.N., Zhang H., Chen Y.Q., Chen W. Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods. PLoS ONE. 2015;10:e0119058. doi: 10.1371/journal.pone.0119058. PubMed DOI PMC

Wolfe K.L., Liu R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI

Bishayee A. Cancer Prevention and Treatment with Resveratrol: From Rodent Studies to Clinical Trials. Cancer Prev. Res. 2009;2:409–418. doi: 10.1158/1940-6207.CAPR-08-0160. PubMed DOI

Zhang L., Ravipati A.S., Koyyalamudi S.R., Jeong S.C., Reddy N., Bartlett J., Smith P.T., de la Cruz M., Monteiro M.C., Melguizo A., et al. Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs. Asian Pac. J. Trop. Med. 2013;6:673–681. doi: 10.1016/S1995-7645(13)60117-0. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...