Factors influencing the production of stilbenes by the knotweed, Reynoutria x bohemica
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20113506
PubMed Central
PMC2834697
DOI
10.1186/1471-2229-10-19
PII: 1471-2229-10-19
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- dusík metabolismus MeSH
- emodin metabolismus MeSH
- fosfor metabolismus MeSH
- léčivé rostliny chemie růst a vývoj mikrobiologie MeSH
- mykorhiza růst a vývoj MeSH
- Polygonum chemie růst a vývoj mikrobiologie MeSH
- půda analýza MeSH
- resveratrol MeSH
- stilbeny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- emodin MeSH
- fosfor MeSH
- půda MeSH
- resveratrol MeSH
- stilbeny MeSH
BACKGROUND: Japanese knotweed, Reynoutria japonica, is known for its high growth rate, even on adverse substrates, and for containing organic substances that are beneficial to human health. Its hybrid, Reynoutria x bohemica, was described in the Czech Republic in 1983 and has been widespread ever since. We examined whether Reynoutria x bohemica as a medicinal plant providing stilbenes and emodin, can be cultivated in spoil bank substrates and hence in the coalmine spoil banks changed into arable fields. We designed a pot experiment and a field experiment to assess the effects of various factors on the growth efficiency of Reynoutria x bohemica on clayish substrates and on the production of stilbenes and emodin in this plant. RESULTS: In the pot experiment, plants were grown on different substrates that varied in organic matter and nutrient content, namely the content of nitrogen and phosphorus. Nitrogen was also introduced into the substrates by melilot, a leguminous plant with nitrogen-fixing rhizobia. Melilot served as a donor of mycorrhizal fungi to knotweed, which did not form any mycorrhiza when grown alone. As expected, the production of knotweed biomass was highest on high-nutrient substrates, namely compost. However, the concentration of the organic constituents studied was higher in plants grown on clayish low-nutrient substrates in the presence of melilot. The content of resveratrol including that of its derivatives, resveratrolosid, piceatannol, piceid and astringin, was significantly higher in the presence of melilot on clay, loess and clayCS. Nitrogen supplied to knotweed by melilot was correlated with the ratio of resveratrol to resveratrol glucosides, indicating that knotweed bestowed some of its glucose production upon covering part of the energy demanded for nitrogen fixation by melilot's rhizobia, and that there is an exchange of organic substances between these two plant species. The three-year field experiment confirmed the ability of Reynoutria x bohemica to grow on vast coalmine spoil banks. The production of this species reached 2.6 t of dry mass per hectare. CONCLUSIONS: Relationships between nitrogen, phosphorus, emodin, and belowground knotweed biomass belong to the most interesting results of this study. Compared with melilot absence, its presence increased the number of significant relationships by introducing those of resveratrol and its derivatives, and phosphorus and nitrogen. Knotweed phosphorus was predominantly taken up from the substrate and was negatively correlated with the content of resveratrol and resveratrol derivatives, while knotweed nitrogen was mainly supplied by melilot rhizobia and was positively correlated with the content of resveratrol and resveratrol derivatives.
Zobrazit více v PubMed
Mandak B, Bimova K, Pysek P, Stepanek J, Plackova I. Isoenzyme diversity in Reynoutria (Polygonaceae) taxa: escape from sterility by hybridization. Plant Systematics and Evolution. 2005;253:219–230. doi: 10.1007/s00606-005-0316-6. DOI
Mandak B, Pysek P, Lysak M, Suda J, Krahulcova A, Bimova K. Variation in DNA-ploidy levels of Reynoutria taxa in the Czech Republic. Annals of Botany. 2003;92:265–272. doi: 10.1093/aob/mcg141. PubMed DOI PMC
Pysek P, Brock JH, Bimova K, Mandak B, Jarosik V, Koukolikova I, Pergl J, Stepanek J. Vegetative regeneration in invasive Reynoutria (Polygonaceae) taxa: The determinant of invasibility at the genotype level. American Journal of Botany. 2003;90:1487–1495. doi: 10.3732/ajb.90.10.1487. PubMed DOI
Chrtek J, Chrtkova A. Reynoutria × bohemica nový køíženec z èeledi rdesnovitých. (Reynoutria × bohemica, a new hybrid of Polygonaceae) Èas Nár Muz, Ser Nat. 1983;152:120.
Bavaresco L, Pezzutto S, Ragga A, Ferrari F, Trevisan M. Effect of nitrogen supply on trans-resveratrol concentration in berries of Vitis vinifera L. cv. Cabernet Sauvignon. Vitis. 2001;40:229–230.
Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H. An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Molecular Biology. 1997;34:417–426. doi: 10.1023/A:1005830714852. PubMed DOI
Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone? Clin Biochem. 1997;30:91–113. doi: 10.1016/S0009-9120(96)00155-5. PubMed DOI
Ferry-Dumazet H, Garnier O, Mamani-Matsuda M, Vercauteren J, Belloc F, Billiard C, Dupouy M, Thiolat D, Kolb JP, Marit G, Reiffers J, Mossalayi MD. Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis. 2002;23:1327–1333. doi: 10.1093/carcin/23.8.1327. PubMed DOI
Roman V, Billard C, Kern C, Ferry-Dumazet H, Izard JC, Mohammad R, Mossalayi DM, Kolb JP. Analysis of resveratrol-induced apoptosis in human B-cell chronic leukaemia. British Journal of Haematology. 2002;117:842–851. doi: 10.1046/j.1365-2141.2002.03520.x. PubMed DOI
Ulrich S, Wolter F, Stein JM. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Molecular Nutrition & Food Research. 2005;49:452–461. doi: 10.1002/mnfr.200400081. PubMed DOI
Wolter F, Ulrich S, Stein J. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in colorectal cancer: Key role of polyamines? Journal of Nutrition. 2004;134:3219–3222. PubMed
El-Mowafy AM, Alkhalaf M. Resveratrol activates adenylyl-cyclase in human breast cancer cells: a novel, estrogen receptor-independent cytostatic mechanism. Carcinogenesis. 2003;24:869–873. doi: 10.1093/carcin/bgg015. PubMed DOI
Carando S, Teissedre PL, Waffo-Teguo P, Cabanis JC, Deffieux G, Merillon JM. High-performance liquid chromatography coupled with fluorescence detection for the determination of trans-astringin in wine. Journal of Chromatography A. 1999;849:617–620. doi: 10.1016/S0021-9673(99)00595-6. PubMed DOI
Merillon JM, Fauconneau B, Teguo PW, Barrier L, Vercauteren J, Huguet F. Antioxidant activity of the stilbene astringin, newly extracted from Vitis vinifera cell cultures. Clinical Chemistry. 1997;43:1092–1093. PubMed
Vitrac X, Bornet A, Vanderlinde R, Valls J, Richard T, Delaunay JC, Merillon JM, Teissedre PL. Determination of stilbenes (delta-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, epsilon-viniferin) in Brazilian wines. Journal of Agricultural and Food Chemistry. 2005;53:5664–5669. doi: 10.1021/jf050122g. PubMed DOI
de Lima MTR, Waffo-Teguo P, Teissedre PL, Pujolas A, Vercauteren J, Cabanis JC, Merillon JM. Determination of stilbenes (trans-astringin, cis- and trans-piceid, and cis- and trans-resveratrol) in Portuguese wines. Journal of Agricultural and Food Chemistry. 1999;47:2666–2670. doi: 10.1021/jf9900884. PubMed DOI
Blumenstein I, Keseru B, Wolter F, Stein J. The chemopreventive agent resveratrol stimulates cyclic AMP - Dependent chloride secretion in vitro. Clinical Cancer Research. 2005;11:5651–5656. doi: 10.1158/1078-0432.CCR-04-2674. PubMed DOI
Fremont L, Gozzelino MT, Linard A. Response of plasma lipids to dietary cholesterol and wine polyphenols in rats fed polyunsaturated fat diets. Lipids. 2000;35:991–999. doi: 10.1007/s11745-000-0610-2. PubMed DOI
Ibern-Gómez M, Roig-Pérez S, de la Torre-Boronat MC. Resveratrol and piceid levels in natural and blended peanut butters. Journal of Agricultural and Food Chemistry. 2009;48:6352–6354. doi: 10.1021/jf000786k. PubMed DOI
Utrup LJ, Norris JH. Nodulin gene expression in effective root nodules of white sweetclover (Melilotus alba Desr) and in ineffective nodules elicited by mutant strains of Rhizobium meliloti. Journal of Experimental Botany. 1996;47:195–202. doi: 10.1093/jxb/47.2.195. DOI
Zahran HH. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of Biotechnology. 2001;91:143–153. doi: 10.1016/S0168-1656(01)00342-X. PubMed DOI
Harley JL, Harley EL. A Checklist of Mycorrhiza in the British Flora - Addenda, Errata and Index. New Phytologist. 1987;107:741–749. doi: 10.1111/j.1469-8137.1987.tb00912.x. DOI
Fuiyoshi M, Masuzawa T, Kagawa A, Nakatsubo T. Successional changes in mycorrhizal type in the pioneer plant communities of a subalpine volcanic desert on Mt. Fuji, Japan. Polar Biosci. 2005;18:60–72.
Ocampo JA, Martin J, Hayman DS. Influence of Plant Interactions on Vesicular-Arbuscular Mycorrhizal Infections. 1. Host and Non-Host Plants Grown Together. New Phytologist. 1980;84:27. doi: 10.1111/j.1469-8137.1980.tb00746.x. DOI
Sykorova Z, Rydlova J, Vosatka M. Establishment of mycorrhizal symbiosis in Gentiana verna. Folia Geobotanica. 2003;38:177–189. doi: 10.1007/BF02803150. DOI
Brock JH. Standing crop of Reynoutria japonica in the autumn of 1991 in the United Kingdom. Preslia. 1995;66:37–43.
Craine JM, Morrow C, Stock WD. Nutrient concentration ratios and co-limitation in South African grasslands. New Phytologist. 2008;179:829–836. doi: 10.1111/j.1469-8137.2008.02513.x. PubMed DOI
Craine JM. Resource strategies of wild plants. Princeton. 2009.
Koerselman W, Meuleman AFM. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology. 1996;33:1441–1450. doi: 10.2307/2404783. DOI
Gusewell S. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist. 2004;164:243–266. doi: 10.1111/j.1469-8137.2004.01192.x. PubMed DOI
Bavaresco L, Fregoni M, Petegolli D. Effect of Nitrogen and Potassium Fertilizer on Induced Resveratrol Synthesis in 2 Grapevine Genotypes. Vitis. 1994;33:175–176.
Lodwig EM, Hosie AHF, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS. Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature. 2003;422:722–726. doi: 10.1038/nature01527. PubMed DOI
Naher UA, Radziah O, Halimi MS, Shamsuddin ZH, Mohd Razi I. Effect of inoculation of inoculation on root exudates carbon sugar and amino acids production of different rice varieties. Research Journal of Microbiology. 2008;3:580–587. doi: 10.3923/jm.2008.580.587. DOI
Leigh J, Hodge A, Fitter AH. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist. 2009;181:199–207. doi: 10.1111/j.1469-8137.2008.02630.x. PubMed DOI
Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology. 2009;150:73–83. doi: 10.1104/pp.109.136390. PubMed DOI PMC
Bago B, Pfeffer PE, Shachar-Hill Y. Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant Physiology. 2000;124:949–958. doi: 10.1104/pp.124.3.949. PubMed DOI PMC
Trouvelot A, Kough JL. In: Physiological and Genetical Aspects of Mycorrhizae. Gianinazzi-Pearson V, Gianinazzi S, editor. Paris: INRA Press; 1986. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionelle; pp. 217–221.