Exploring sperm cell motion dynamics: Insights from genetic algorithm-based analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39660215
PubMed Central
PMC11630665
DOI
10.1016/j.csbj.2024.06.008
PII: S2001-0370(24)00206-X
Knihovny.cz E-zdroje
- Klíčová slova
- Biological motion, Flagellum deformation, Genetic algorithm, Motion analysis, Sperm cell dynamics,
- Publikační typ
- časopisecké články MeSH
Accurate analysis of sperm cell flagellar dynamics plays a crucial role in understanding sperm motility as flagella parameters determine cell behavior in the spatiotemporal domain. In this study, we introduce a novel approach by harnessing Genetic Algorithms (GA) to analyze sperm flagellar motion characteristics and compare the results with the traditional decomposition method based on Fourier analysis. Our analysis focuses on extracting key parameters of the equation approximating flagellar shape, including beating period time, bending amplitude, mean curvature, and wavelength. Additionally, we delve into the extraction of phase constants and initial swimming directions, vital for the comprehensive study of sperm cell pairs and bundling phenomena. One significant advantage of GA over Fourier analysis is its ability to integrate sperm cell motion data, enabling a more comprehensive analysis. In contrast, Fourier analysis neglects sperm cell motion by transitioning to a sperm-centered coordinate system (material system). In our comparative study, GA consistently outperform the Fourier analysis-based method, yielding a remarkable reduction in fitting error of up to 70% and on average by 45%. An in-depth exploration of the sperm cell motion becomes indispensable in a wide range of applications from complexities of reproductive biology and medicine, to developing soft flagellated microrobots.
Department of Biomechanical Engineering University of Twente Twente 7500 AE the Netherlands
Department of Physics German University in Cairo New Cairo 11835 Egypt
Faculty of Information Technology Czech Technical University Prague Prague 16000 Czech Republic
Zobrazit více v PubMed
Bayly P.V., Lewis B.L., Ranz E.C., Okamoto R.J., Pless R.B., Dutcher S.K. Propulsive Forces on the Flagellum during Locomotion of Chlamydomonas reinhardtii. Biophys J. 2011;100:2716–2725. PubMed PMC
Dai C., Zhang Z., Huang J., Wang X., Ru C., Pu H., et al. Automated non-invasive measurement of single sperm's motility and morphology. IEEE Trans Med Imaging. 2018;37(10):2257–2265. PubMed
Das C., Mokashi C., Mande S.S., Saini S. Dynamics and control of flagella assembly in Salmonella typhimurium. Front Cell Infect Microbiol. 2018;8:36. PubMed PMC
Farrell P.B., Presicce G.A., Brockett C.C., Foote R.H. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Biophys J. 2011;49(4):871–879. doi: 10.1016/S0093-691X(98)00036-3. PubMed DOI
Friedrich B.M., Riedel-Kruse I.H., Howard J., Jülicher F. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J Exp Biol. 2010;213:1226–1234. doi: 10.1242/jeb.039800. PubMed DOI
Gaffney E.A., Ishimoto K., Walker B.J. Modelling motility: the mathematics of spermatozoa. Front Cell Dev Biol. 2021;9 PubMed PMC
Gallagher M.T., Cupples G., Ooi E.H., Kirkman-Brown J.C., Smith D.J. Rapid sperm capture: high-throughput flagellar waveform analysis. Hum Reprod. 2019;34(7):1173–1185. PubMed PMC
Gray J. The movement of spermatozoa of the bull. J Exp Biol. 1958;35:96–108.
Hansen J.N., Rassmann S., Jikeli J.F., Wachten D. SpermQ–a simple analysis software to comprehensively study flagellar beating and sperm steering. Cells. 2018;8(1):10. PubMed PMC
Hidayatullah P., Mengko T.L., Munir R., Barlian A. Bull sperm tracking and machine learning-based motility classification. IEEE Access. 2021;9:61159–61170.
Holwill M.E.J. Physical aspects of flagellar movement. Physiol Rev. 1966;46(4):696–785.
Khalil I.S.M., Dijkslag H.C., Abelmann L., Misra S. MagnetoSperm: A microrobot that navigates using weak magnetic fields. Appl Phys Lett. 2014;104:22.
Liu J., Leung C., Lu Zhe, Sun Yu. Quantitative analysis of locomotive behavior of human sperm head and tail. IEEE Trans Biomed Eng. 2012;60(2):390–396. PubMed
Magdanz V., Khalil I.S.M., Simmchen J., Furtado G.P., Mohanty S., Gebauer J., et al. IRONSperm: Sperm-templated soft magnetic microrobots. Sci Adv. 2020;6(28) PubMed PMC
Magdanz V., Schmidt O.G. Spermbots: potential impact for drug delivery and assisted reproductive technologies. Expert Opin Drug Deliv. 2014;11(8):1125–1129. PubMed
Montenegro-Johnson T.D., Smith A.A., Smith D.J., Loghin D., Blake J.R. Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur Phys J E. 2012;35:1–17. PubMed
Morcillo i Soler P., Hidalgo C., Fekete Z., Zalanyi L., Khalil I.S.M., Yeste M., Magdanz V. Bundle formation of sperm: influence of environmental factors. Front Endocrinol. 2022;13 doi: 10.3389/fendo.2022.957684. PubMed DOI PMC
Raj B., Ahmedy I., Idris M.Y.I., Noor R.M.D. A hybrid sperm swarm optimization and genetic algorithm for unimodal and multimodal optimization problems. IEEE Access. 2022;10:109580–109596.
Riedel-Kruse I.H., Hilfinger A., Howard J., Jülicher F. How molecular motors shape the flagellar beat. HFSP J. 2007;1(3):192–208. doi: 10.2976/1.2773861. PubMed DOI PMC
Rikmenspoel R. Measurements of motility and energy metabolism of bull spermatozoa. Trans N Y Acad Sci. 1964;26:1072–1086. PubMed
Rikmenspoel R. The inhibition by amytal of respiration and motiliy of bull spermatozoa. Exp Cell Res. 1965;37:312–326. PubMed
Rikmenspoel R. The tail movement of bull spermatozoa. Observations and model calculations. Biophys J. 1965;5:365–392. PubMed PMC
Rikmenspoel R., van Herpen G. Cinematographic observations on the movements of bull sperm cells. Phys Med Biol. 1960;5:167–181. PubMed
Rikmenspoel R., Smits Utrecht H.J. 1957. Photoelectric and Cinematographic Measurements of the “Motility” of Bull Sperm Cells. PubMed
Rothschild L. Cambridge Univ. Press; 1961. “The Cell and the OYgznism” ed. by J. A. Ramsay and V. B. Wigglesworth.
Sakkas D., Ramalingam M., Garrido N., Barratt C.L.R. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Updat. 2015;21(6):711–726. PubMed PMC
Sohail A. Genetic algorithms in the fields of artificial intelligence and data sciences. Ann Data Sci. 2023;10:1007–1018. doi: 10.1007/s40745-021-00354-9. DOI
Srairi F., Meguellati M., Saidi L., Djeffal F., meguellati F. Analytical modeling and optimization of new swimming microrobot design using genetic algorithm computations. 14th international conference on Sciences and Techniques of Automatic control & computer engineering - STA'2013; Sousse, Tunisia; 2013. pp. 265–268.
Sun J., Garibaldi J., Hodgman C. Parameter estimation using metaheuristics in systems biology: a comprehensive review. ACM Trans Comput Biol Bioinform. 2012;9(1):185–202. PubMed
Xu H., Medina-Sánchez M., Magdanz V., Schwarz L., Hebenstreit F., Schmidt O.G. Sperm-hybrid micromotor for targeted drug delivery. ACS Nano. 2018;12(1):327–337. PubMed
Zhang K., Klingner A., Le Gars Y., Misra S., Magdanz V., Khalil I.S.M. Locomotion of bovine spermatozoa during the transition from individual cells to bundles. Proc Natl Acad Sci. 2023;120(3) doi: 10.1073/pnas.2211911120. PubMed DOI PMC