Exploring sperm cell motion dynamics: Insights from genetic algorithm-based analysis

. 2024 Dec ; 23 () : 2837-2850. [epub] 20240627

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39660215
Odkazy

PubMed 39660215
PubMed Central PMC11630665
DOI 10.1016/j.csbj.2024.06.008
PII: S2001-0370(24)00206-X
Knihovny.cz E-zdroje

Accurate analysis of sperm cell flagellar dynamics plays a crucial role in understanding sperm motility as flagella parameters determine cell behavior in the spatiotemporal domain. In this study, we introduce a novel approach by harnessing Genetic Algorithms (GA) to analyze sperm flagellar motion characteristics and compare the results with the traditional decomposition method based on Fourier analysis. Our analysis focuses on extracting key parameters of the equation approximating flagellar shape, including beating period time, bending amplitude, mean curvature, and wavelength. Additionally, we delve into the extraction of phase constants and initial swimming directions, vital for the comprehensive study of sperm cell pairs and bundling phenomena. One significant advantage of GA over Fourier analysis is its ability to integrate sperm cell motion data, enabling a more comprehensive analysis. In contrast, Fourier analysis neglects sperm cell motion by transitioning to a sperm-centered coordinate system (material system). In our comparative study, GA consistently outperform the Fourier analysis-based method, yielding a remarkable reduction in fitting error of up to 70% and on average by 45%. An in-depth exploration of the sperm cell motion becomes indispensable in a wide range of applications from complexities of reproductive biology and medicine, to developing soft flagellated microrobots.

Zobrazit více v PubMed

Bayly P.V., Lewis B.L., Ranz E.C., Okamoto R.J., Pless R.B., Dutcher S.K. Propulsive Forces on the Flagellum during Locomotion of Chlamydomonas reinhardtii. Biophys J. 2011;100:2716–2725. PubMed PMC

Dai C., Zhang Z., Huang J., Wang X., Ru C., Pu H., et al. Automated non-invasive measurement of single sperm's motility and morphology. IEEE Trans Med Imaging. 2018;37(10):2257–2265. PubMed

Das C., Mokashi C., Mande S.S., Saini S. Dynamics and control of flagella assembly in Salmonella typhimurium. Front Cell Infect Microbiol. 2018;8:36. PubMed PMC

Farrell P.B., Presicce G.A., Brockett C.C., Foote R.H. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Biophys J. 2011;49(4):871–879. doi: 10.1016/S0093-691X(98)00036-3. PubMed DOI

Friedrich B.M., Riedel-Kruse I.H., Howard J., Jülicher F. High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J Exp Biol. 2010;213:1226–1234. doi: 10.1242/jeb.039800. PubMed DOI

Gaffney E.A., Ishimoto K., Walker B.J. Modelling motility: the mathematics of spermatozoa. Front Cell Dev Biol. 2021;9 PubMed PMC

Gallagher M.T., Cupples G., Ooi E.H., Kirkman-Brown J.C., Smith D.J. Rapid sperm capture: high-throughput flagellar waveform analysis. Hum Reprod. 2019;34(7):1173–1185. PubMed PMC

Gray J. The movement of spermatozoa of the bull. J Exp Biol. 1958;35:96–108.

Hansen J.N., Rassmann S., Jikeli J.F., Wachten D. SpermQ–a simple analysis software to comprehensively study flagellar beating and sperm steering. Cells. 2018;8(1):10. PubMed PMC

Hidayatullah P., Mengko T.L., Munir R., Barlian A. Bull sperm tracking and machine learning-based motility classification. IEEE Access. 2021;9:61159–61170.

Holwill M.E.J. Physical aspects of flagellar movement. Physiol Rev. 1966;46(4):696–785.

Khalil I.S.M., Dijkslag H.C., Abelmann L., Misra S. MagnetoSperm: A microrobot that navigates using weak magnetic fields. Appl Phys Lett. 2014;104:22.

Liu J., Leung C., Lu Zhe, Sun Yu. Quantitative analysis of locomotive behavior of human sperm head and tail. IEEE Trans Biomed Eng. 2012;60(2):390–396. PubMed

Magdanz V., Khalil I.S.M., Simmchen J., Furtado G.P., Mohanty S., Gebauer J., et al. IRONSperm: Sperm-templated soft magnetic microrobots. Sci Adv. 2020;6(28) PubMed PMC

Magdanz V., Schmidt O.G. Spermbots: potential impact for drug delivery and assisted reproductive technologies. Expert Opin Drug Deliv. 2014;11(8):1125–1129. PubMed

Montenegro-Johnson T.D., Smith A.A., Smith D.J., Loghin D., Blake J.R. Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur Phys J E. 2012;35:1–17. PubMed

Morcillo i Soler P., Hidalgo C., Fekete Z., Zalanyi L., Khalil I.S.M., Yeste M., Magdanz V. Bundle formation of sperm: influence of environmental factors. Front Endocrinol. 2022;13 doi: 10.3389/fendo.2022.957684. PubMed DOI PMC

Raj B., Ahmedy I., Idris M.Y.I., Noor R.M.D. A hybrid sperm swarm optimization and genetic algorithm for unimodal and multimodal optimization problems. IEEE Access. 2022;10:109580–109596.

Riedel-Kruse I.H., Hilfinger A., Howard J., Jülicher F. How molecular motors shape the flagellar beat. HFSP J. 2007;1(3):192–208. doi: 10.2976/1.2773861. PubMed DOI PMC

Rikmenspoel R. Measurements of motility and energy metabolism of bull spermatozoa. Trans N Y Acad Sci. 1964;26:1072–1086. PubMed

Rikmenspoel R. The inhibition by amytal of respiration and motiliy of bull spermatozoa. Exp Cell Res. 1965;37:312–326. PubMed

Rikmenspoel R. The tail movement of bull spermatozoa. Observations and model calculations. Biophys J. 1965;5:365–392. PubMed PMC

Rikmenspoel R., van Herpen G. Cinematographic observations on the movements of bull sperm cells. Phys Med Biol. 1960;5:167–181. PubMed

Rikmenspoel R., Smits Utrecht H.J. 1957. Photoelectric and Cinematographic Measurements of the “Motility” of Bull Sperm Cells. PubMed

Rothschild L. Cambridge Univ. Press; 1961. “The Cell and the OYgznism” ed. by J. A. Ramsay and V. B. Wigglesworth.

Sakkas D., Ramalingam M., Garrido N., Barratt C.L.R. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Updat. 2015;21(6):711–726. PubMed PMC

Sohail A. Genetic algorithms in the fields of artificial intelligence and data sciences. Ann Data Sci. 2023;10:1007–1018. doi: 10.1007/s40745-021-00354-9. DOI

Srairi F., Meguellati M., Saidi L., Djeffal F., meguellati F. Analytical modeling and optimization of new swimming microrobot design using genetic algorithm computations. 14th international conference on Sciences and Techniques of Automatic control & computer engineering - STA'2013; Sousse, Tunisia; 2013. pp. 265–268.

Sun J., Garibaldi J., Hodgman C. Parameter estimation using metaheuristics in systems biology: a comprehensive review. ACM Trans Comput Biol Bioinform. 2012;9(1):185–202. PubMed

Xu H., Medina-Sánchez M., Magdanz V., Schwarz L., Hebenstreit F., Schmidt O.G. Sperm-hybrid micromotor for targeted drug delivery. ACS Nano. 2018;12(1):327–337. PubMed

Zhang K., Klingner A., Le Gars Y., Misra S., Magdanz V., Khalil I.S.M. Locomotion of bovine spermatozoa during the transition from individual cells to bundles. Proc Natl Acad Sci. 2023;120(3) doi: 10.1073/pnas.2211911120. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...