Sperm cell dynamics
Dotaz
Zobrazit nápovědu
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
- MeSH
- epigeneze genetická MeSH
- fenotyp MeSH
- lidé MeSH
- náchylnost k nemoci MeSH
- rozmnožování genetika MeSH
- sperma * MeSH
- spermie * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
As a link between a stable genome and a dynamic environment, epigenetics is a promising tool for mapping age-related changes in human DNA. Methylated cytosine changes at specific loci are generally less studied in sperm DNA than in somatic cell DNA. Age-related methylation changes can be connected to various reproductive health problems and multiple disorders in offspring. In addition, they can be helpful in forensic fields, where testing of specific loci in semen samples found at sexual assault crime scenes can predict a perpetrator's age and narrow down the police investigation. This review focuses on age-related methylation changes in sperm. It covers the biological role of methylation, methylation testing techniques and the implications of methylation changes in forensics and clinical practice.
- MeSH
- DNA metabolismus MeSH
- epigeneze genetická MeSH
- lidé MeSH
- metylace DNA * MeSH
- sperma * MeSH
- spermie metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Juno and CD9 protein, expressed in oolemma, are known to be essential for sperm-oocyte binding and fusion. Although evidence exists that these two proteins cooperate, their interaction has not yet been demonstrated. Here in, we present Juno and CD9 mutual localization over the surface of mouse metaphase II oocytes captured using the 3D STED super-resolution technique. The precise localization of examined proteins was identified in different compartments of oolemma such as the microvillar membrane, planar membrane between individual microvilli, and the membrane of microvilli-free region. Observed variance in localization of Juno and CD9 was confirmed by analysis of transmission and scanning electron microscopy images, which showed a significant difference in the presence of proteins between selected membrane compartments. Colocalization analysis of super-resolution images based on Pearson's correlation coefficient supported evidence of Juno and CD9 mutual position in the oolemma, which was identified by proximity ligation assay. Importantly, the interaction between Juno and CD9 was detected by co-immunoprecipitation and mass spectrometry in HEK293T/17 transfected cell line. For better understanding of experimental data, mouse Juno and CD9 3D structure were prepared by comparative homology modelling and several protein-protein flexible sidechain dockings were performed using the ClusPro server. The dynamic state of the proteins was studied in real-time at atomic level by molecular dynamics (MD) simulation. Docking and MD simulation predicted Juno-CD9 interactions and stability also suggesting an interactive mechanism. Using the multiscale approach, we detected close proximity of Juno and CD9 within microvillar oolemma however, not in the planar membrane or microvilli-free region. Our findings show yet unidentified Juno and CD9 interaction within the mouse oolemma protein network prior to sperm attachment. These results suggest that a Juno and CD9 interactive network could assist in primary Juno binding to sperm Izumo1 as a prerequisite to subsequent gamete membrane fusion.
- Publikační typ
- časopisecké články MeSH
In mammals, integrins are heterodimeric transmembrane glycoproteins that represent a large group of cell adhesion receptors involved in cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrin receptors are an important part of signalization pathways and have an ability to transmit signals into and out of cells and participate in cell activation. In addition to somatic cells, integrins have also been detected on germ cells and are known to play a crucial role in complex gamete-specific physiological events, resulting in sperm-oocyte fusion. The main aim of this review is to summarize the current knowledge on integrins in reproduction and deliver novel perspectives and graphical interpretations presenting integrin subunits localization and their dynamic relocation during sperm maturation in comparison to the oocyte. A significant part of this review is devoted to discussing the existing view of the role of integrins during sperm migration through the female reproductive tract; oviductal reservoir formation; sperm maturation processes ensuing capacitation and the acrosome reaction, and their direct and indirect involvement in gamete membrane adhesion and fusion leading to fertilization.
- MeSH
- integriny metabolismus MeSH
- interakce spermie a vajíčka fyziologie MeSH
- kapacitace spermií * MeSH
- lidé MeSH
- oocyty cytologie metabolismus MeSH
- spermie cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
... Genetics of Meiotic Chromosome Dynamics and Fertility -- TRAVIS KENT, TANMOY BHATTACHARYYA, MARY ANN ... ... Effects of Aging on Sperm Chromatin -- JOHANNA SELVARATNAM, HEATHER FICE, ANAÍS NOBLANC, BERNARD ROBAIRE ... ... -- Introduction 85 -- Transformations of the Nucleus During Spermatogenesis 86 Aging and Male Germ Cells ... ... In Vitro Spermatogenesis From Pluripotent Stem Cells -- JIN DU, QING\'QIN GAO, CHENG HUANG, HAI-PING ... ... Genetics 393 -- Sperm Epigenetics 394 -- References 394 -- Further Reading 398 -- Chapter 18. ...
xv, 693 stran : ilustrace ; 24 cm
17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation-called capacitation-and sperm⁻egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis. Estradiol increased protein tyrosine phosphorylation, elevated rate of spontaneous acrosome reaction, and altered motility parameters measured Hamilton-Thorne Computer Assisted Semen Analyzer (CASA) in capacitating sperm. To monitor time and concentration dependent binding dynamics of extracellular estradiol, high-performance liquid chromatography with tandem mass spectrometry was used to measure sperm response and data was subjected to kinetic analysis. The kinetic model of estradiol action during sperm maturation shows that estradiol adsorption onto a plasma membrane surface is controlled by Langmuir isotherm. After, when estradiol passes into the cytoplasm, it forms an unstable adduct with cytoplasmic receptors, which display a signalling autocatalytic pattern. This autocatalytic reaction suggests crosstalk between receptor and non-receptor pathways utilized by sperm prior to fertilization.
- MeSH
- akrozomální reakce účinky léků MeSH
- estradiol metabolismus farmakologie MeSH
- kapacitace spermií účinky léků fyziologie MeSH
- kinetika MeSH
- motilita spermií účinky léků MeSH
- myši inbrední C57BL MeSH
- progesteron farmakologie MeSH
- signální transdukce * MeSH
- sperma účinky léků metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aims of the study were: i) to compare circulating tumor DNA (ctDNA) yields obtained by different manual extraction procedures, ii) to evaluate the addition of various carrier molecules into the plasma to improve ctDNA extraction recovery, and iii) to use next generation sequencing (NGS) technology to analyze KRAS, BRAF, and NRAS somatic mutations in ctDNA from patients with metastatic colorectal cancer. Venous blood was obtained from patients who suffered from metastatic colorectal carcinoma. For plasma ctDNA extraction, the following carriers were tested: carrier RNA, polyadenylic acid, glycogen, linear acrylamide, yeast tRNA, salmon sperm DNA, and herring sperm DNA. Each extract was characterized by quantitative real-time PCR and next generation sequencing. The addition of polyadenylic acid had a significant positive effect on the amount of ctDNA eluted. The sequencing data revealed five cases of ctDNA mutated in KRAS and one patient with a BRAF mutation. An agreement of 86% was found between tumor tissues and ctDNA. Testing somatic mutations in ctDNA seems to be a promising tool to monitor dynamically changing genotypes of tumor cells circulating in the body. The optimized process of ctDNA extraction should help to obtain more reliable sequencing data in patients with metastatic colorectal cancer.
- MeSH
- DNA nádorová krev genetika izolace a purifikace MeSH
- kolorektální nádory krev diagnóza genetika patologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- metastázy nádorů MeSH
- mutační analýza DNA MeSH
- prognóza MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- transportní proteiny krev MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Spermatogenesis is a costly process that is expected to be under selection to maximise sperm quantity and quality. Testis size is often regarded as a proxy measure of sperm investment, implicitly overlooking the quantitative assessment of spermatogenesis. An enhanced understanding of testicular function, beyond testis size, may reveal further sexual traits involved in sperm quantity and quality. Here, we first estimated the inter-male variation in testicular function and sperm traits in red deer across the breeding and non-breeding seasons. Then, we analysed the relationships between the testis mass, eight parameters of spermatogenic function, and seven parameters of sperm quality. Our findings revealed that the Sertoli cell number and function parameters vary greatly between red deer males, and that spermatogenic activity co-varies with testis mass and sperm quality across the breeding and non-breeding seasons. For the first time in a seasonal breeder, we found that not only is the Sertoli cell number important in determining testis mass (r = 0.619, p = 0.007 and r = 0.248, p = 0.047 for the Sertoli cell number assessed by histology and cytology, respectively), but also sperm function (r = 0.703, p = 0.002 and r = 0.328, p = 0.012 for the Sertoli cell number assessed by histology and cytology, respectively). Testicular histology also revealed that a high Sertoli cell number per tubular cross-section is associated with high sperm production (r = 0.600, p = 0.009). Sperm production and function were also positively correlated (r = 0.384, p = 0.004), suggesting that these traits co-vary to maximise sperm fertilisation ability in red deer. In conclusion, our findings contribute to the understanding of the dynamics of spermatogenesis, and reveal new insights into the role of testicular function and the Sertoli cell number on testis size and sperm quality in red deer.
... CONTENTS -- Introduction to Pathophysiology, xv -- PART ONE CENTRAL CONCEPTS OF PATHOPHYSIOLOGY: CELLS ... ... AND TISSUES -- UNIT 1 The Cell -- 1 Cellular Biology, 1 Kathryn L. ... ... Components, 2 Nucleus, 2 -- Cytoplasmic Organelles, 4 Plasma Membranes, 11 Cellular Receptors, 16 Cell-to-Cell ... ... Adhesions, 17 Extracellular Matrix, 17 Specialized Cell Junctions, 18 Cellular Communication and Signal ... ... Formation, 33 Movement of Electrical Impulses: Membrane Potentials, 36 Cellular Reproduction: The Cell ...
7th ed. xxvi, 1810 s. : il. (převážně barev.) ; 29 cm
- MeSH
- biomedicínský výzkum MeSH
- dítě MeSH
- dospělí MeSH
- fyziologie MeSH
- klinické lékařství MeSH
- patologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- Konspekt
- Experimentální medicína
- Učební osnovy. Vyučovací předměty. Učebnice
- NLK Obory
- patologie
- fyziologie
- NLK Publikační typ
- učebnice vysokých škol
- kolektivní monografie
BACKGROUND: Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. RESULTS: Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. CONCLUSIONS: The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen-tube tip growth. In addition, we highlighted the molecular dynamics of core cell-cycle regulators in the male gametophyte and postulated the first genetic model to account for the differential timing of spermatogenesis among angiosperms and its coordination with female gametogenesis.
- MeSH
- Arabidopsis genetika MeSH
- buněčný cyklus genetika MeSH
- gametogeneze rostlin MeSH
- genový knockdown MeSH
- klíčení MeSH
- kořeny rostlin genetika MeSH
- pyl genetika MeSH
- pylová láčka růst a vývoj MeSH
- regulace genové exprese u rostlin MeSH
- RNA rostlin genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- tabák genetika MeSH
- transkriptom MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH