Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07332S
Grantová Agentura České Republiky
PubMed
31671520
PubMed Central
PMC6862693
DOI
10.3390/ma12213557
PII: ma12213557
Knihovny.cz E-zdroje
- Klíčová slova
- compatibility, functional properties, hygrothermal performance, lava granulate, repair mortars,
- Publikační typ
- časopisecké články MeSH
In this paper, crushed lava granulate was used as full silica sand replacement in composition of repair mortars based on hydrated lime, natural hydraulic lime, or cement-lime binder. Lava granules were analyzed by X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Particle size distribution of both silica and lava aggregates was assessed using standard sieve analysis. Hygrothermal function of the developed lightweight materials was characterized by the measurement of complete set of hygric, thermal, and structural parameters of the hardened mortar samples that were tested for both 28 days and 90 days cured specimens. As the repair mortars must also meet requirements on mechanical performance, their compressive strength, flexural strength, and dynamic Young's modulus were tested. The newly developed mortars composed of lava aggregate and hydrated lime or natural hydraulic lime met technical, functional, compatibility, and performance criteria on masonry and rendering materials, and were found well applicable for repair of historically valuable buildings.
Zobrazit více v PubMed
Aubert J.E., Marcom A., Oliva P., Segui P. Chequered earth construction in south-western France. J. Cult. Herit. 2015;16:293–298. doi: 10.1016/j.culher.2014.07.002. DOI
Aguliar R., Marques R., Boyer K., Martel C., Trujilano F., Boroschek R. Investigation on the structural behaviour of archaeological heritage in Peru: Form survey to seismic assessment. Eng. Struct. 2015;95:94–111. doi: 10.1016/j.engstruct.2015.03.058. DOI
Gomes M.I., Goncalves T.D., Faria P. Hydric behavior of earth materials and their stabilization with cement or lime: Study on repair mortars for historical rammed earth structures. J. Mater. Civ. Eng. 2016;28:04016041. doi: 10.1061/(ASCE)MT.1943-5533.0001536. DOI
Ponce-Anton G., Arizzi A., Zuluaga M.C., Cultrone G., Ortega L.A., Mauleon J.A. Mineralogical, textural and physical characterization to determine deterioration susceptibility of Irulegi castle lime mortars (Navarre, Spain) Materials. 2019;12:584. doi: 10.3390/ma12040584. PubMed DOI PMC
Jonaitis B., Antonovic V., Sneideris A., Boris R., Zavalis R. Analysis of physical and mechanical properties of the mortar in the historic retaining wall of the Gediminas Castle Hill (Vilnius, Lithuania) Materials. 2019;12:8. doi: 10.3390/ma12010008. PubMed DOI PMC
Sutti M.L., de Aguiar M.O.S., Fioriti C.F., Christofani M.P.H. Characterization of historical coating mortars of La Ceramo factory in Valencia. Vitr. Int. J. Archit. Technol. Sustain. 2019;4:59–73. doi: 10.4995/vitruvio-ijats.2019.11485. DOI
Guerra F.L., Lopes W., Cazarolli J.C., Lobato M., Masuero A.B., Dal Molin D.C.C., Bento F.M., Schrank A., Vainstein M.H. Biodeterioration of mortar coating in historical buildings: Microclimatic characterization, material, and fungal community. Build. Environ. 2019;155:195–209. doi: 10.1016/j.buildenv.2019.03.017. DOI
Moropoulou A., Bakolas A., Anagnostopoulou S. Composite materials in ancient structures. Cem. Concr. Compos. 2005;27:295–300. doi: 10.1016/j.cemconcomp.2004.02.018. DOI
Maravelaki-Kalaitzaki P., Bakolas A., Karatasios I., Kilikoglou V. Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem. Concr. Res. 2005;35:1577–1586. doi: 10.1016/j.cemconres.2004.09.001. DOI
Akcay C., Sayin B., Yildizlar B. The conservation and repair of historical masonry ruins based on laboratory analyses. Constr. Build. Mater. 2017;132:383–394. doi: 10.1016/j.conbuildmat.2016.12.002. DOI
Tenconi M., Karatasios I., Bala’awi F., Kilikoglou V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J. Cult. Herit. 2018;33:100–116. doi: 10.1016/j.culher.2018.03.005. DOI
Callebaut K., Elsen J., Van Balen K., Viane W. Nineteenh century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium) Natural hydraulic lime or cement? Cem. Concr. Res. 2001;31:397–403. doi: 10.1016/S0008-8846(00)00499-3. DOI
Columbu S., Garau A.M., Luglie C. Geochemical characterisation of pozzolanic obsidian glasses used in the ancient mortars of Nora Roman theatre (Sardinia, Italy): Provenance of raw materials and historical-archaeological implications. Arch. Anthropol. Sci. 2019;11:2121–2150. doi: 10.1007/s12520-018-0658-y. DOI
Papayianni I., Stefanidou M. Stremgth-porosity relationships in lime-pozzolan mortars. Constr. Build. Mater. 2006;20:700–705. doi: 10.1016/j.conbuildmat.2005.02.012. DOI
Wang J., Zhao T. Regional energy-environmental performance and investment strategy for China’s non-ferrous metals industry: A non-radial DEA based analysis. J. Clean. Prod. 2017;163:187–201. doi: 10.1016/j.jclepro.2016.02.020. DOI
Stefanidou M., Assael M., Antoniadis K., Matziaroglou G. Thermal conductivity of building materials employed in the preservation of traditional structures. Int. J. Thermophys. 2010;31:844–851. doi: 10.1007/s10765-010-0750-8. DOI
Gris E.R., Paine K.A., Heath A., Norman J., Pinder H. Compressive strength development of binary and ternary lime-pozzolan mortars. Mater. Des. 2013;52:514–523. doi: 10.1016/j.matdes.2013.05.006. DOI
Mounir S., Hamid K.A., Maaloufa Y. Thermal inertia for composite materials white cement-cork, cement mortar-cork, and plaster-cork. Energy Procedia. 2015;74:991–999. doi: 10.1016/j.egypro.2015.07.830. DOI
Singh M., Waghmare S., Kumar S.V. Characterization of lime plasters used in 16th century Mughal monument. J. Archaeol. Sci. 2014;42:430–434. doi: 10.1016/j.jas.2013.11.019. DOI
Santos Silva A., Cruz T., Paiva M.J., Candeias A., Schiavon N., Mirão J.A.P. Mineralogical and chemical characterization of historical mortars from military fortifications in Lisbon harbor (Portugal) Environ. Earth Sci. 2011;63:1641–1650. doi: 10.1007/s12665-011-0985-0. DOI
Bochen J., Labus M. Study on physical and chemical properties of external lime-sand plasters of some historical buildings. Constr. Build. Mater. 2013;45:11–19. doi: 10.1016/j.conbuildmat.2013.03.086. DOI
Mazhoud B., Collet F., Pretot S., Chamoin J. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 2016;96:206–216. doi: 10.1016/j.buildenv.2015.11.013. DOI
Bochen J. Weathering effects on physical-chemical properties of external plaster mortars exposed to different environments. Constr. Build. Mater. 2015;79:192–206. doi: 10.1016/j.conbuildmat.2014.12.079. DOI
Borges C., Santos Silva A., Veiga R. Durability of ancient lime mortars in humid environment. Constr. Build. Mater. 2014;66:606–620. doi: 10.1016/j.conbuildmat.2014.05.019. DOI
Groot C., van Hees R., Wijffels T. Selection of plasters and renders for salt laden masonry substrates. Constr. Build. Mater. 2009;23:1743–1750. doi: 10.1016/j.conbuildmat.2008.09.013. DOI
Fassina V., Favaro M., Naccari A., Pigo M. Evaluation of compatibility and durability of a hydraulic lime-based plaster applied on brick wall masonry of historical buildings affected by rising damp phenomena. J. Cult. Herit. 2002;3:45–54. doi: 10.1016/S1296-2074(02)01158-5. DOI
Sepulcre-Aguilar A., Hernández-Olivares F. Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem. Concr. Res. 2010;40:66–76. doi: 10.1016/j.cemconres.2009.08.028. DOI
Mosquera M.J., Silva B., Prieto B., Ruiz-Herrera E. Addition of cement to lime based mortars: Effect on pore structure and vapor transport. Cem. Concr. Res. 2006;36:1635–1642. doi: 10.1016/j.cemconres.2004.10.041. DOI
Faria-Rodrigues P., Henriques F.M.A. Current mortars in conservation: An overview. Restor. Build. Monum. 2004;10:609–622.
Torney C., Forester A.M., Szadurski E.M. Specialist ‘restoration mortars’ for stone elements: A comparison of the physical properties of two stone repair materials. Herit. Sci. 2014;2:1. doi: 10.1186/2050-7445-2-1. DOI
Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Pavlík Z. Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars. Materials. 2019;12:2227. doi: 10.3390/ma12142227. PubMed DOI PMC
Elert K., Rodriguez-Navarro C., Pardo E.S., Hansen E., Cazalla O. Lime mortars for the conservation of historic buildings. Stud. Conserv. 2002;47:62–75. doi: 10.1179/sic.2002.47.1.62. DOI
Ventolà L., Vendrell M., Giraldez P., Merino L. Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 2011;25:3313–3318. doi: 10.1016/j.conbuildmat.2011.03.020. DOI
Silva B.A., Ferreira Pinto A.P., Gomes A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015;94:346–360. doi: 10.1016/j.conbuildmat.2015.06.058. DOI
Moropoulou A., Bakolas A., Moundoulas P., Aggelakopoulou E., Anagnostopoulou S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Res. 2005;27:289–294. doi: 10.1016/j.cemconcomp.2004.02.017. DOI
Amanatidis G. European Policies on Climate and Energy towards 2020, 2030 and 2050. [(accessed on 18 June 2019)]; Available online: http://www.europarl.europa.eu/RegData/etudes/BRIE/2019/631047/IPOL_BRI(2019)631047_EN.pdf.
Garcia-Saez I., Méndez J., Ortiz C., Loncar D., Becerra J.A., Chacartegui R. Energy and economic assessment of solar Organic Rankine Cycle for combined heat and power generation in residential applications. Renew. Energy. 2019;140:461–476. doi: 10.1016/j.renene.2019.03.033. DOI
Intensity of Final Energy Consumption. [(accessed on 18 June 2019)]; Available online: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-intensity-4/assessment-2.
Giosuè C., Pierpaoli M., Mobili A., Ruello M.L., Tittarelli F. Influence of binders and lightweight aggregates on the properties of cementitious mortars: From traditional requirements to indoor air quality improvement. Materials. 2017;10:978. doi: 10.3390/ma10080978. PubMed DOI PMC
Barbero S., Dutto M., Ferrua C., Pereno A. Analysis on existent thermal insulating plasters towards innovative applications: Evaluation methodology for a real cost-performance comparison. Energy Build. 2014;77:40–47. doi: 10.1016/j.enbuild.2014.03.037. DOI
Panesar D.K., Shindman B. The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cem. Concr. Compos. 2012;34:982–992. doi: 10.1016/j.cemconcomp.2012.06.003. DOI
Rahim M., Douzane O., Tran Le A.D., Langlet T. Effect of the moisture and temperature on thermal properties of three bio-based materials. Constr. Build. Mater. 2016;111:119–127. doi: 10.1016/j.conbuildmat.2016.02.061. DOI
Ben Mansour N., Boudjemaa A., Gherabli A., Kareche A., Boudenne A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014;81:98–104. doi: 10.1016/j.enbuild.2014.05.032. DOI
Taoukil D., El Bouardi A., Ajzoul T., Ezbakhe H. Effect of the incorporation of wood wool on thermos physical properties of sand mortars. KSCE J. Civ. Eng. 2012;16:1003–1010. doi: 10.1007/s12205-012-1470-3. DOI
Rahim M., Douzane O., Tran Le A.D., Promis G., Langlet T. Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Constr. Build. Mater. 2016;102:679–687. doi: 10.1016/j.conbuildmat.2015.11.021. DOI
Pichor W., Kaminski A., Syoldra P., Frac M. Lightweight cement mortars with granulated foam glass and waste perlite addition. Adv. Civ. Eng. 2019;2019:1705490. doi: 10.1155/2019/1705490. DOI
Fenoglio E., Fantucci S., Serra. V., Carbonaro C., Pollo R. Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 2018;179:26–38. doi: 10.1016/j.enbuild.2018.08.017. DOI
Ibrahim M., Wurtz E., Biwole P.H., Achard P., Sallee H. Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy Build. 2014;84:241–251. doi: 10.1016/j.enbuild.2014.07.039. DOI
Glória Gomes M., Flores-Colen I., Manga L.M., Soares A., de Brito J. The influence of moisture content on the thermal conductivity of external thermal mortars. Constr. Build. Mater. 2017;135:279–286. doi: 10.1016/j.conbuildmat.2016.12.166. DOI
Al Zaidi A.K.A., Demirel B., Atis C.D. Effect of different storage methods on thermal and mechanical properties of mortar containing aerogel, fly ash and nano-silica. Constr. Build. Mater. 2019;199:501–507. doi: 10.1016/j.conbuildmat.2018.12.052. DOI
Tchamdjoua W.H.J., Grigolettoc S., Michelec F., Courardc L., Abidia M.L., Cherradia T. An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar. Case Stud. Constr. Mater. 2017;7:191–206. doi: 10.1016/j.cscm.2017.07.005. DOI
Jackson M.D., Ciancio Rossetto P., Kosso C.K., Buonfiglio M., Marra F. Building materials of the theatre of Marcellus, Rome. Archaeometry. 2011;53:728–742. doi: 10.1111/j.1475-4754.2010.00570.x. DOI
Di Benedetto C., Graziano S.F., Guarino V., Rispoli C., Munzi P., Morra V., Cappelletti P. Romans’ established skills: Mortars from D46b mausoleum, Porta Mediana necropolis, Cuma (Naples) Mediter. Archaelogy Archaom. 2018;18:131–146. doi: 10.5281/zenodo.1285895. DOI
Marra F., Anzidei M., Benini A., D’Ambrosio E., Gaeta M., Ventura G., Cavallo A. Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes. J. Volcanol. Geoth. Res. 2016;328:59–69. doi: 10.1016/j.jvolgeores.2016.10.005. DOI
Lanas J., Alvarez-Galindo J.I. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003;33:1867–1876. doi: 10.1016/S0008-8846(03)00210-2. DOI
EN 1015-3, Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization; Brussels, Belgium: 1999.
EN 1015-2, Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars. European Committee for Standardization; Brussels, Belgium: 1998.
EN 196-1, Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization; Brussels, Belgium: 2016.
EN 196-6, Methods of Testing Cement—Part 6: Determination of Fineness. European Committee for Standardization; Brussels, Belgium: 2010.
EN 933-1, Testing for Geometrical Properties of Aggregates–Part 1: Determination of Particle Size Distribution. European Committee for Standardization; Brussels, Belgium: 2012.
EN 1097-6, Tests for Mechanical and Physical Properties of Aggregates–Part 6: Determination of Particle Density and Water Absorption. European Committee for Standardization; Brussels, Belgium: 2013.
NF P 18-513, 2009. Pozzolanic Addition for Concrete-Metakaolin: Definitions, Specifications and Conformity Criteria, Annex A. Association Francaise de Normalisation; Paris, France: 2009.
Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116. doi: 10.1016/j.conbuildmat.2017.11.021. DOI
Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI
EN 1015-10, Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
EN 1015-11, Methods of Test for Mortar for Masonry-Part 10: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
EN 1015-18, Methods of Test for Mortar for Masonry—Part 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.
Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envel. Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI
Pavlík Z., Černý R. Determination of moisture diffusivity as a function of both moisture and temperature. Int. J. Thermophys. 2012;33:1704–1714. doi: 10.1007/s10765-011-1006-y. DOI
ISO 12572, Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties. International Organization for Standardization; Geneva, Switzerland: 2001.
Záleská M., Pavlík Z., Čítek D., Jankovský O., Pavlíková M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate–Properties and thermal stability. Constr. Build. Mater. 2019;225:709–722. doi: 10.1016/j.conbuildmat.2019.07.168. DOI
Luo K., Li J., Lu Z.Y., Jiang J., Niu Y.H. Effect of nano-SiO2 on early hydration of natural hydraulic lime. Constr. Build. Mater. 2019;216:119–127. doi: 10.1016/j.conbuildmat.2019.04.269. DOI
Lea F.M. The Chemistry of Cement and Concrete. Edward Arnold; London, UK: 1976.
Grilo J., Santos Silva A., Faria P., Gameiro A., Veiga R., Velosa A. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Constr. Build. Mater. 2014;51:287–294. doi: 10.1016/j.conbuildmat.2013.10.045. DOI
Raverdy M., Brivot F., Paillére A.M., Dron R. Appréciation de I’Activité Pouzzolanique des Constituants Secondaires; Proceedings of the 7th International Congress on the Chemistry of Cement; Paris, France. 30 June–4 July 1980; pp. 36–41.
Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986;27:745–750. doi: 10.1093/petrology/27.3.745. DOI
Wakizaka Y. Alkali–silica reactivity of Japanese rocks. Eng. Geol. 2000;56:211–221. doi: 10.1016/S0013-7952(99)00144-1. DOI
Jozwiak-Niedzwiedzka D., Antolik A., Dziedzic K., Glinicki M.A., Gibas K. Resistance of selected aggregates from igneous rocks to alkali-silica reaction: Verification. Roads Bridges Drogi I Mosty. 2019;18:67–83. doi: 10.7409/rabdim.019.005. DOI
Tapan M. Alkali–silica reactivity of alkali volcanic rocks. Eur. J. Environ. Civ. Eng. 2014;19:94–108. doi: 10.1080/19648189.2014.939303. DOI
Garijo L., Azenha M., Ramesh M., Lourenço P.B., Ruiz G. Stiffness evolution of natural hydraulic lime mortars at early ages measured through EMM-ARM. Constr. Build. Mater. 2019;216:405–415. doi: 10.1016/j.conbuildmat.2019.04.258. DOI
Pachta V., Triantafyllaki S., Stefanidou M. Performance of lime-based mortars at elevated temperatures. Constr. Build. Mater. 2018;189:576–584. doi: 10.1016/j.conbuildmat.2018.09.027. DOI
Palomar I., Barluenga G., Puentes J. Lime-cement mortars for coating with improved thermal and acoustic performance. Constr. Build. Mater. 2015;75:306–314. doi: 10.1016/j.conbuildmat.2014.11.012. DOI
Ramesh A., Ayenha M., Lourenço P.B. Mechanical properties of lime-cement masonry mortars in their early ages. Mater. Struct. 2019;52:13. doi: 10.1617/s11527-019-1319-z. DOI
Singhal V., Rai D.C. Suitability of half-scale burnt clay bricks for shake table tests on masonry walls. J. Mater. Civ. Eng. 2014;26:644–657. doi: 10.1061/(ASCE)MT.1943-5533.0000861. DOI
Veiga M., Velosa A., Magalhães A. Evaluation of mechanical compatibility of renders to apply on old walls based on a restrained shrinkage test. Mater. Struct. 2007;40:1115–1126. doi: 10.1617/s11527-006-9209-6. DOI
EN 998-1, Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. European Committee for Standardization; Brussels, Belgium: 2016.
Nogueira R., Ferreira Pinto A.P., Gomes A. Design and behaviour of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018;89:192–204. doi: 10.1016/j.cemconcomp.2018.03.005. DOI
Pavlíková M., Zemanová L., Záleská M., Pokorný J., Lojka M., Jankovský O., Pavlík Z. Ternary blended binder for production of a novel type of lightweight repair mortar. Materials. 2019;12:996. doi: 10.3390/ma12060996. PubMed DOI PMC
Fusade L., Viles H., Wood C., Burns C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr. Build. Mater. 2019;212:500–513. doi: 10.1016/j.conbuildmat.2019.03.326. DOI
Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., et al. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envel. Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI
Chennouf N., Agoudjil B., Boudenne A., Benzarti K., Bouras F. Hygrothermal characterization of a new bio-based construction material: Concrete reinforced with date palm fibers. Constr. Build. Mater. 2018;192:348–356. doi: 10.1016/j.conbuildmat.2018.10.089. DOI
Silva B.A., Ferreira Pinto A.P., Gomes A. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014;72:208–218. doi: 10.1016/j.conbuildmat.2014.09.010. DOI
Bianco N., Calia A., Denotarpietro G., Negro P. Hydraulic mortar and problems related to the suitability for restoration. Period. Miner. 2013;82:529–542. doi: 10.2451/2013PM0031. DOI
Ochs F., Heidemann W., Mueller-Steinhagen H. Effective thermal conductivity of moistened insulation materials as a function of temperature. Int. J. Heat Mass Transf. 2008;51:539–552. doi: 10.1016/j.ijheatmasstransfer.2007.05.005. DOI
Wang Y., Zhao Z., Liu Y., Wang D., Ma C., Liu J. Comprehensive correction of thermal conductivity of moist porous building materials with static moisture distribution and moisture transfer. Energy. 2019;176:103–118. doi: 10.1016/j.energy.2019.03.178. DOI
Lide D.R., editor. CRC Handbook of Chemistry and Physics. 79th ed. CRC Press; Boca Raton, FL, USA: 1998.
EN 1745, Masonry and Masonry Products—Methods for Determining Thermal Properties. European Committee for Standardization; Brussels, Belgium: 2012.
Palomar I., Barluenga G. Assessment of lime-cement mortar microstructure and properties by P- and S- ultrasonic waves. Constr. Build. Mater. 2017;139:334–341. doi: 10.1016/j.conbuildmat.2017.02.083. DOI
Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture