Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings

. 2019 Oct 30 ; 12 (21) : . [epub] 20191030

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31671520

Grantová podpora
18-07332S Grantová Agentura České Republiky

In this paper, crushed lava granulate was used as full silica sand replacement in composition of repair mortars based on hydrated lime, natural hydraulic lime, or cement-lime binder. Lava granules were analyzed by X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Particle size distribution of both silica and lava aggregates was assessed using standard sieve analysis. Hygrothermal function of the developed lightweight materials was characterized by the measurement of complete set of hygric, thermal, and structural parameters of the hardened mortar samples that were tested for both 28 days and 90 days cured specimens. As the repair mortars must also meet requirements on mechanical performance, their compressive strength, flexural strength, and dynamic Young's modulus were tested. The newly developed mortars composed of lava aggregate and hydrated lime or natural hydraulic lime met technical, functional, compatibility, and performance criteria on masonry and rendering materials, and were found well applicable for repair of historically valuable buildings.

Zobrazit více v PubMed

Aubert J.E., Marcom A., Oliva P., Segui P. Chequered earth construction in south-western France. J. Cult. Herit. 2015;16:293–298. doi: 10.1016/j.culher.2014.07.002. DOI

Aguliar R., Marques R., Boyer K., Martel C., Trujilano F., Boroschek R. Investigation on the structural behaviour of archaeological heritage in Peru: Form survey to seismic assessment. Eng. Struct. 2015;95:94–111. doi: 10.1016/j.engstruct.2015.03.058. DOI

Gomes M.I., Goncalves T.D., Faria P. Hydric behavior of earth materials and their stabilization with cement or lime: Study on repair mortars for historical rammed earth structures. J. Mater. Civ. Eng. 2016;28:04016041. doi: 10.1061/(ASCE)MT.1943-5533.0001536. DOI

Ponce-Anton G., Arizzi A., Zuluaga M.C., Cultrone G., Ortega L.A., Mauleon J.A. Mineralogical, textural and physical characterization to determine deterioration susceptibility of Irulegi castle lime mortars (Navarre, Spain) Materials. 2019;12:584. doi: 10.3390/ma12040584. PubMed DOI PMC

Jonaitis B., Antonovic V., Sneideris A., Boris R., Zavalis R. Analysis of physical and mechanical properties of the mortar in the historic retaining wall of the Gediminas Castle Hill (Vilnius, Lithuania) Materials. 2019;12:8. doi: 10.3390/ma12010008. PubMed DOI PMC

Sutti M.L., de Aguiar M.O.S., Fioriti C.F., Christofani M.P.H. Characterization of historical coating mortars of La Ceramo factory in Valencia. Vitr. Int. J. Archit. Technol. Sustain. 2019;4:59–73. doi: 10.4995/vitruvio-ijats.2019.11485. DOI

Guerra F.L., Lopes W., Cazarolli J.C., Lobato M., Masuero A.B., Dal Molin D.C.C., Bento F.M., Schrank A., Vainstein M.H. Biodeterioration of mortar coating in historical buildings: Microclimatic characterization, material, and fungal community. Build. Environ. 2019;155:195–209. doi: 10.1016/j.buildenv.2019.03.017. DOI

Moropoulou A., Bakolas A., Anagnostopoulou S. Composite materials in ancient structures. Cem. Concr. Compos. 2005;27:295–300. doi: 10.1016/j.cemconcomp.2004.02.018. DOI

Maravelaki-Kalaitzaki P., Bakolas A., Karatasios I., Kilikoglou V. Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem. Concr. Res. 2005;35:1577–1586. doi: 10.1016/j.cemconres.2004.09.001. DOI

Akcay C., Sayin B., Yildizlar B. The conservation and repair of historical masonry ruins based on laboratory analyses. Constr. Build. Mater. 2017;132:383–394. doi: 10.1016/j.conbuildmat.2016.12.002. DOI

Tenconi M., Karatasios I., Bala’awi F., Kilikoglou V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J. Cult. Herit. 2018;33:100–116. doi: 10.1016/j.culher.2018.03.005. DOI

Callebaut K., Elsen J., Van Balen K., Viane W. Nineteenh century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium) Natural hydraulic lime or cement? Cem. Concr. Res. 2001;31:397–403. doi: 10.1016/S0008-8846(00)00499-3. DOI

Columbu S., Garau A.M., Luglie C. Geochemical characterisation of pozzolanic obsidian glasses used in the ancient mortars of Nora Roman theatre (Sardinia, Italy): Provenance of raw materials and historical-archaeological implications. Arch. Anthropol. Sci. 2019;11:2121–2150. doi: 10.1007/s12520-018-0658-y. DOI

Papayianni I., Stefanidou M. Stremgth-porosity relationships in lime-pozzolan mortars. Constr. Build. Mater. 2006;20:700–705. doi: 10.1016/j.conbuildmat.2005.02.012. DOI

Wang J., Zhao T. Regional energy-environmental performance and investment strategy for China’s non-ferrous metals industry: A non-radial DEA based analysis. J. Clean. Prod. 2017;163:187–201. doi: 10.1016/j.jclepro.2016.02.020. DOI

Stefanidou M., Assael M., Antoniadis K., Matziaroglou G. Thermal conductivity of building materials employed in the preservation of traditional structures. Int. J. Thermophys. 2010;31:844–851. doi: 10.1007/s10765-010-0750-8. DOI

Gris E.R., Paine K.A., Heath A., Norman J., Pinder H. Compressive strength development of binary and ternary lime-pozzolan mortars. Mater. Des. 2013;52:514–523. doi: 10.1016/j.matdes.2013.05.006. DOI

Mounir S., Hamid K.A., Maaloufa Y. Thermal inertia for composite materials white cement-cork, cement mortar-cork, and plaster-cork. Energy Procedia. 2015;74:991–999. doi: 10.1016/j.egypro.2015.07.830. DOI

Singh M., Waghmare S., Kumar S.V. Characterization of lime plasters used in 16th century Mughal monument. J. Archaeol. Sci. 2014;42:430–434. doi: 10.1016/j.jas.2013.11.019. DOI

Santos Silva A., Cruz T., Paiva M.J., Candeias A., Schiavon N., Mirão J.A.P. Mineralogical and chemical characterization of historical mortars from military fortifications in Lisbon harbor (Portugal) Environ. Earth Sci. 2011;63:1641–1650. doi: 10.1007/s12665-011-0985-0. DOI

Bochen J., Labus M. Study on physical and chemical properties of external lime-sand plasters of some historical buildings. Constr. Build. Mater. 2013;45:11–19. doi: 10.1016/j.conbuildmat.2013.03.086. DOI

Mazhoud B., Collet F., Pretot S., Chamoin J. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 2016;96:206–216. doi: 10.1016/j.buildenv.2015.11.013. DOI

Bochen J. Weathering effects on physical-chemical properties of external plaster mortars exposed to different environments. Constr. Build. Mater. 2015;79:192–206. doi: 10.1016/j.conbuildmat.2014.12.079. DOI

Borges C., Santos Silva A., Veiga R. Durability of ancient lime mortars in humid environment. Constr. Build. Mater. 2014;66:606–620. doi: 10.1016/j.conbuildmat.2014.05.019. DOI

Groot C., van Hees R., Wijffels T. Selection of plasters and renders for salt laden masonry substrates. Constr. Build. Mater. 2009;23:1743–1750. doi: 10.1016/j.conbuildmat.2008.09.013. DOI

Fassina V., Favaro M., Naccari A., Pigo M. Evaluation of compatibility and durability of a hydraulic lime-based plaster applied on brick wall masonry of historical buildings affected by rising damp phenomena. J. Cult. Herit. 2002;3:45–54. doi: 10.1016/S1296-2074(02)01158-5. DOI

Sepulcre-Aguilar A., Hernández-Olivares F. Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem. Concr. Res. 2010;40:66–76. doi: 10.1016/j.cemconres.2009.08.028. DOI

Mosquera M.J., Silva B., Prieto B., Ruiz-Herrera E. Addition of cement to lime based mortars: Effect on pore structure and vapor transport. Cem. Concr. Res. 2006;36:1635–1642. doi: 10.1016/j.cemconres.2004.10.041. DOI

Faria-Rodrigues P., Henriques F.M.A. Current mortars in conservation: An overview. Restor. Build. Monum. 2004;10:609–622.

Torney C., Forester A.M., Szadurski E.M. Specialist ‘restoration mortars’ for stone elements: A comparison of the physical properties of two stone repair materials. Herit. Sci. 2014;2:1. doi: 10.1186/2050-7445-2-1. DOI

Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Pavlík Z. Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars. Materials. 2019;12:2227. doi: 10.3390/ma12142227. PubMed DOI PMC

Elert K., Rodriguez-Navarro C., Pardo E.S., Hansen E., Cazalla O. Lime mortars for the conservation of historic buildings. Stud. Conserv. 2002;47:62–75. doi: 10.1179/sic.2002.47.1.62. DOI

Ventolà L., Vendrell M., Giraldez P., Merino L. Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 2011;25:3313–3318. doi: 10.1016/j.conbuildmat.2011.03.020. DOI

Silva B.A., Ferreira Pinto A.P., Gomes A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015;94:346–360. doi: 10.1016/j.conbuildmat.2015.06.058. DOI

Moropoulou A., Bakolas A., Moundoulas P., Aggelakopoulou E., Anagnostopoulou S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Res. 2005;27:289–294. doi: 10.1016/j.cemconcomp.2004.02.017. DOI

Amanatidis G. European Policies on Climate and Energy towards 2020, 2030 and 2050. [(accessed on 18 June 2019)]; Available online: http://www.europarl.europa.eu/RegData/etudes/BRIE/2019/631047/IPOL_BRI(2019)631047_EN.pdf.

Garcia-Saez I., Méndez J., Ortiz C., Loncar D., Becerra J.A., Chacartegui R. Energy and economic assessment of solar Organic Rankine Cycle for combined heat and power generation in residential applications. Renew. Energy. 2019;140:461–476. doi: 10.1016/j.renene.2019.03.033. DOI

Intensity of Final Energy Consumption. [(accessed on 18 June 2019)]; Available online: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-intensity-4/assessment-2.

Giosuè C., Pierpaoli M., Mobili A., Ruello M.L., Tittarelli F. Influence of binders and lightweight aggregates on the properties of cementitious mortars: From traditional requirements to indoor air quality improvement. Materials. 2017;10:978. doi: 10.3390/ma10080978. PubMed DOI PMC

Barbero S., Dutto M., Ferrua C., Pereno A. Analysis on existent thermal insulating plasters towards innovative applications: Evaluation methodology for a real cost-performance comparison. Energy Build. 2014;77:40–47. doi: 10.1016/j.enbuild.2014.03.037. DOI

Panesar D.K., Shindman B. The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cem. Concr. Compos. 2012;34:982–992. doi: 10.1016/j.cemconcomp.2012.06.003. DOI

Rahim M., Douzane O., Tran Le A.D., Langlet T. Effect of the moisture and temperature on thermal properties of three bio-based materials. Constr. Build. Mater. 2016;111:119–127. doi: 10.1016/j.conbuildmat.2016.02.061. DOI

Ben Mansour N., Boudjemaa A., Gherabli A., Kareche A., Boudenne A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014;81:98–104. doi: 10.1016/j.enbuild.2014.05.032. DOI

Taoukil D., El Bouardi A., Ajzoul T., Ezbakhe H. Effect of the incorporation of wood wool on thermos physical properties of sand mortars. KSCE J. Civ. Eng. 2012;16:1003–1010. doi: 10.1007/s12205-012-1470-3. DOI

Rahim M., Douzane O., Tran Le A.D., Promis G., Langlet T. Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Constr. Build. Mater. 2016;102:679–687. doi: 10.1016/j.conbuildmat.2015.11.021. DOI

Pichor W., Kaminski A., Syoldra P., Frac M. Lightweight cement mortars with granulated foam glass and waste perlite addition. Adv. Civ. Eng. 2019;2019:1705490. doi: 10.1155/2019/1705490. DOI

Fenoglio E., Fantucci S., Serra. V., Carbonaro C., Pollo R. Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 2018;179:26–38. doi: 10.1016/j.enbuild.2018.08.017. DOI

Ibrahim M., Wurtz E., Biwole P.H., Achard P., Sallee H. Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy Build. 2014;84:241–251. doi: 10.1016/j.enbuild.2014.07.039. DOI

Glória Gomes M., Flores-Colen I., Manga L.M., Soares A., de Brito J. The influence of moisture content on the thermal conductivity of external thermal mortars. Constr. Build. Mater. 2017;135:279–286. doi: 10.1016/j.conbuildmat.2016.12.166. DOI

Al Zaidi A.K.A., Demirel B., Atis C.D. Effect of different storage methods on thermal and mechanical properties of mortar containing aerogel, fly ash and nano-silica. Constr. Build. Mater. 2019;199:501–507. doi: 10.1016/j.conbuildmat.2018.12.052. DOI

Tchamdjoua W.H.J., Grigolettoc S., Michelec F., Courardc L., Abidia M.L., Cherradia T. An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar. Case Stud. Constr. Mater. 2017;7:191–206. doi: 10.1016/j.cscm.2017.07.005. DOI

Jackson M.D., Ciancio Rossetto P., Kosso C.K., Buonfiglio M., Marra F. Building materials of the theatre of Marcellus, Rome. Archaeometry. 2011;53:728–742. doi: 10.1111/j.1475-4754.2010.00570.x. DOI

Di Benedetto C., Graziano S.F., Guarino V., Rispoli C., Munzi P., Morra V., Cappelletti P. Romans’ established skills: Mortars from D46b mausoleum, Porta Mediana necropolis, Cuma (Naples) Mediter. Archaelogy Archaom. 2018;18:131–146. doi: 10.5281/zenodo.1285895. DOI

Marra F., Anzidei M., Benini A., D’Ambrosio E., Gaeta M., Ventura G., Cavallo A. Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes. J. Volcanol. Geoth. Res. 2016;328:59–69. doi: 10.1016/j.jvolgeores.2016.10.005. DOI

Lanas J., Alvarez-Galindo J.I. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003;33:1867–1876. doi: 10.1016/S0008-8846(03)00210-2. DOI

EN 1015-3, Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization; Brussels, Belgium: 1999.

EN 1015-2, Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars. European Committee for Standardization; Brussels, Belgium: 1998.

EN 196-1, Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization; Brussels, Belgium: 2016.

EN 196-6, Methods of Testing Cement—Part 6: Determination of Fineness. European Committee for Standardization; Brussels, Belgium: 2010.

EN 933-1, Testing for Geometrical Properties of Aggregates–Part 1: Determination of Particle Size Distribution. European Committee for Standardization; Brussels, Belgium: 2012.

EN 1097-6, Tests for Mechanical and Physical Properties of Aggregates–Part 6: Determination of Particle Density and Water Absorption. European Committee for Standardization; Brussels, Belgium: 2013.

NF P 18-513, 2009. Pozzolanic Addition for Concrete-Metakaolin: Definitions, Specifications and Conformity Criteria, Annex A. Association Francaise de Normalisation; Paris, France: 2009.

Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116. doi: 10.1016/j.conbuildmat.2017.11.021. DOI

Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI

EN 1015-10, Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

EN 1015-11, Methods of Test for Mortar for Masonry-Part 10: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

EN 1015-18, Methods of Test for Mortar for Masonry—Part 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.

Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envel. Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI

Pavlík Z., Černý R. Determination of moisture diffusivity as a function of both moisture and temperature. Int. J. Thermophys. 2012;33:1704–1714. doi: 10.1007/s10765-011-1006-y. DOI

ISO 12572, Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties. International Organization for Standardization; Geneva, Switzerland: 2001.

Záleská M., Pavlík Z., Čítek D., Jankovský O., Pavlíková M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate–Properties and thermal stability. Constr. Build. Mater. 2019;225:709–722. doi: 10.1016/j.conbuildmat.2019.07.168. DOI

Luo K., Li J., Lu Z.Y., Jiang J., Niu Y.H. Effect of nano-SiO2 on early hydration of natural hydraulic lime. Constr. Build. Mater. 2019;216:119–127. doi: 10.1016/j.conbuildmat.2019.04.269. DOI

Lea F.M. The Chemistry of Cement and Concrete. Edward Arnold; London, UK: 1976.

Grilo J., Santos Silva A., Faria P., Gameiro A., Veiga R., Velosa A. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Constr. Build. Mater. 2014;51:287–294. doi: 10.1016/j.conbuildmat.2013.10.045. DOI

Raverdy M., Brivot F., Paillére A.M., Dron R. Appréciation de I’Activité Pouzzolanique des Constituants Secondaires; Proceedings of the 7th International Congress on the Chemistry of Cement; Paris, France. 30 June–4 July 1980; pp. 36–41.

Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986;27:745–750. doi: 10.1093/petrology/27.3.745. DOI

Wakizaka Y. Alkali–silica reactivity of Japanese rocks. Eng. Geol. 2000;56:211–221. doi: 10.1016/S0013-7952(99)00144-1. DOI

Jozwiak-Niedzwiedzka D., Antolik A., Dziedzic K., Glinicki M.A., Gibas K. Resistance of selected aggregates from igneous rocks to alkali-silica reaction: Verification. Roads Bridges Drogi I Mosty. 2019;18:67–83. doi: 10.7409/rabdim.019.005. DOI

Tapan M. Alkali–silica reactivity of alkali volcanic rocks. Eur. J. Environ. Civ. Eng. 2014;19:94–108. doi: 10.1080/19648189.2014.939303. DOI

Garijo L., Azenha M., Ramesh M., Lourenço P.B., Ruiz G. Stiffness evolution of natural hydraulic lime mortars at early ages measured through EMM-ARM. Constr. Build. Mater. 2019;216:405–415. doi: 10.1016/j.conbuildmat.2019.04.258. DOI

Pachta V., Triantafyllaki S., Stefanidou M. Performance of lime-based mortars at elevated temperatures. Constr. Build. Mater. 2018;189:576–584. doi: 10.1016/j.conbuildmat.2018.09.027. DOI

Palomar I., Barluenga G., Puentes J. Lime-cement mortars for coating with improved thermal and acoustic performance. Constr. Build. Mater. 2015;75:306–314. doi: 10.1016/j.conbuildmat.2014.11.012. DOI

Ramesh A., Ayenha M., Lourenço P.B. Mechanical properties of lime-cement masonry mortars in their early ages. Mater. Struct. 2019;52:13. doi: 10.1617/s11527-019-1319-z. DOI

Singhal V., Rai D.C. Suitability of half-scale burnt clay bricks for shake table tests on masonry walls. J. Mater. Civ. Eng. 2014;26:644–657. doi: 10.1061/(ASCE)MT.1943-5533.0000861. DOI

Veiga M., Velosa A., Magalhães A. Evaluation of mechanical compatibility of renders to apply on old walls based on a restrained shrinkage test. Mater. Struct. 2007;40:1115–1126. doi: 10.1617/s11527-006-9209-6. DOI

EN 998-1, Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. European Committee for Standardization; Brussels, Belgium: 2016.

Nogueira R., Ferreira Pinto A.P., Gomes A. Design and behaviour of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018;89:192–204. doi: 10.1016/j.cemconcomp.2018.03.005. DOI

Pavlíková M., Zemanová L., Záleská M., Pokorný J., Lojka M., Jankovský O., Pavlík Z. Ternary blended binder for production of a novel type of lightweight repair mortar. Materials. 2019;12:996. doi: 10.3390/ma12060996. PubMed DOI PMC

Fusade L., Viles H., Wood C., Burns C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr. Build. Mater. 2019;212:500–513. doi: 10.1016/j.conbuildmat.2019.03.326. DOI

Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., et al. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envel. Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI

Chennouf N., Agoudjil B., Boudenne A., Benzarti K., Bouras F. Hygrothermal characterization of a new bio-based construction material: Concrete reinforced with date palm fibers. Constr. Build. Mater. 2018;192:348–356. doi: 10.1016/j.conbuildmat.2018.10.089. DOI

Silva B.A., Ferreira Pinto A.P., Gomes A. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014;72:208–218. doi: 10.1016/j.conbuildmat.2014.09.010. DOI

Bianco N., Calia A., Denotarpietro G., Negro P. Hydraulic mortar and problems related to the suitability for restoration. Period. Miner. 2013;82:529–542. doi: 10.2451/2013PM0031. DOI

Ochs F., Heidemann W., Mueller-Steinhagen H. Effective thermal conductivity of moistened insulation materials as a function of temperature. Int. J. Heat Mass Transf. 2008;51:539–552. doi: 10.1016/j.ijheatmasstransfer.2007.05.005. DOI

Wang Y., Zhao Z., Liu Y., Wang D., Ma C., Liu J. Comprehensive correction of thermal conductivity of moist porous building materials with static moisture distribution and moisture transfer. Energy. 2019;176:103–118. doi: 10.1016/j.energy.2019.03.178. DOI

Lide D.R., editor. CRC Handbook of Chemistry and Physics. 79th ed. CRC Press; Boca Raton, FL, USA: 1998.

EN 1745, Masonry and Masonry Products—Methods for Determining Thermal Properties. European Committee for Standardization; Brussels, Belgium: 2012.

Palomar I., Barluenga G. Assessment of lime-cement mortar microstructure and properties by P- and S- ultrasonic waves. Constr. Build. Mater. 2017;139:334–341. doi: 10.1016/j.conbuildmat.2017.02.083. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...