Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07332S
Grantová Agentura České Republiky
PubMed
31295888
PubMed Central
PMC6678867
DOI
10.3390/ma12142227
PII: ma12142227
Knihovny.cz E-zdroje
- Klíčová slova
- binder physical and chemical analyses, environmental assessment, functional properties, industrial waste, lime-pozzolan renovation mortars, pozzolanic activity, wood-based biomass ash,
- Publikační typ
- časopisecké články MeSH
Mechanically-activated wood-based biomass ash (WBA) was studied as a potential active admixture for design of a novel lime-pozzolan-based mortar for renovation purposes. The replacement ratio of lime hydrate in a mortar mix composition was 5%, 10%, and 15% by mass. The water/binder ratio and the sand/binder ratio were kept constant for all examined mortar mixes. Both binder constituents were characterized by their powder density, specific density, BET (Brunauer-Emmett-Teller), and Blaine specific surfaces. Their chemical composition was measured by X-ray fluorescence analysis (XRF) and mineralogical analysis was performed using X-ray diffraction (XRD). Morphology of WBA was investigated by scanning electron microscopy (SEM) and element mapping was performed using an energy dispersive spectroscopy (EDS) analyzer. The pozzolanic activity of WBA was tested by the Chapelle test and assessment of the Portlandite content used simultaneous thermal analysis (STA). For the hardened mortar samples, a complete set of structural, mechanical, hygric, and thermal parameters was experimentally determined. The mortars with WBA admixing yielded similar or better functional properties than those obtained for traditional pure lime-based plaster, pointing to their presumed application as rendering and walling renovation mortars. As the Chapelle test, STA, and mechanical test proved high pozzolanity of WBA, it was classified as an alternative eco-efficient low-cost pozzolan for use in lime blend-based building materials. The savings in CO2 emissions and energy by the use of WBA as a partial lime hydrate substitute in mortar composition were also highly appreciated with respect to the sustainability of the construction industry.
Zobrazit více v PubMed
Gris E.R., Paine K.A., Heath A., Norman J., Pinder H. Compressive strength development of binary and ternary lime-pozzolan mortars. Mater. Des. 2013;52:514–523. doi: 10.1016/j.matdes.2013.05.006. DOI
Callebaut K., Elsen J., Van Balen K., Viane W. Nineteenh century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium) Natural hydraulic lime or cement? Cem. Concr. Res. 2001;31:397–403. doi: 10.1016/S0008-8846(00)00499-3. DOI
Lea F.M. The Chemistry of Cement and Concrete. Edward Arnold; London, UK: 1976.
Ponce-Anton G., Arizzi A., Zuluaga M.C., Cultrone G., Ortega L.A., Mauleon J.A. Mineralogical, textural and physical characterization to determine deterioration susceptibility of Irulegi castle lime mortars (Navarre, Spain) Materials. 2019;12:584. doi: 10.3390/ma12040584. PubMed DOI PMC
Jonaitis B., Antonovic V., Sneideris A., Boris R., Zavalis R. Analysis of physical and mechanical properties of the mortar in the historic retaining wall of the Gediminas Castle Hill (Vilnius, Lithuania) Materials. 2019;12:8. doi: 10.3390/ma12010008. PubMed DOI PMC
Izzo F., Grifa C., Germinario C., Mercurio M., De Bonis A., Tomay L., Langella A. Production technology of mortar-based building materials from the Arch of Trajan and the Roman Theatre in Benevento, Italy. Eur. Phys. J. Plus. 2018;133:363. doi: 10.1140/epjp/i2018-12229-1. DOI
Dalto D.P.D., Ribeiro R.C.D., de Moura L.C.R. Characterization of the lime mortars of the Rui Barbosa House Museum in Rio De Janeiro, Brazil. Minerals. 2018;8:50. doi: 10.3390/min8020050. DOI
Sepulcre-Aguilar A., Hernández-Olivares F. Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem. Concr. Res. 2010;40:66–76. doi: 10.1016/j.cemconres.2009.08.028. DOI
Mosquera M.J., Silva B., Prieto B., Ruiz-Herrera E. Addition of cement to lime based mortars: Effect on pore structure and vapor transport. Cem. Concr. Res. 2006;36:1635–1642. doi: 10.1016/j.cemconres.2004.10.041. DOI
Faria-Rodrigues P., Henriques F.M.A. Current mortars in conservation: An overview. Restor. Build. Monum. 2004;10:609–622.
Elert K., Rodriguez-Navarro C., Pardo E.S., Hansen E., Cazalla O. Lime mortars for the conservation of historic buildings. Stud. Conserv. 2002;47:62–75. doi: 10.1179/sic.2002.47.1.62. DOI
Torres I., Matias G. Sustainable mortars for rehabilitation of old plasters. Eng. Struct. 2016;129:11–17. doi: 10.1016/j.engstruct.2016.07.009. DOI
Barbero-Barrera M., Maldonado-Ramos L., Van Balenb K., García-Santosa A., Neila-González F. Lime render layers: An overview of their properties. J. Cult. Herit. 2014;15:326–330. doi: 10.1016/j.culher.2013.07.004. DOI
Schueremans L., Cizer Ö., Janssens E., Serré G., Van Balen K. Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice. Constr. Build. Mater. 2011;25:4338–4350. doi: 10.1016/j.conbuildmat.2011.01.008. DOI
Arizzi A., Viles H., Cultrone G. Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Constr. Build. Mater. 2012;28:807–818. doi: 10.1016/j.conbuildmat.2011.10.059. DOI
Farina P., Henriques F., Rato V. Comparative evaluation of lime mortars for architectural conservation. J. Cult. Herit. 2008;9:338–346. doi: 10.1016/j.culher.2008.03.003. DOI
Govaerts Y., Hayen R., de Bouw M., Verdonck A., Maulebroeck W., Mertens S. Performance of a lime-based insulating render for heritage buildings. Constr. Build. Mater. 2018;159:376–389. doi: 10.1016/j.conbuildmat.2017.10.115. DOI
Vitruvius P. Vitruvius: The Ten Books of Architecture. Hardpress Publishing; Los Angeles, CA, USA: 2012.
Veiga M.R., Santos Silva A., Tavares M., Santos A.R., Lampreia N. Characterization of renders and plasters from a 16th century Portuguese military structure: Chronology and durability. Restor. Build. Monum. 2013;19:223–238. doi: 10.1515/rbm-2013-6603. DOI
Santos Silva A., Cruz T., Paiva M.J., Candeias A., Adriano P., Schiavon N., Mirão J. Mineralogical and chemical characterization of historical mortars from military fortifications in Lisbon harbour (Portugal) Environ. Earth Sci. 2011;7:1641–1650. doi: 10.1007/s12665-011-0985-0. DOI
Veiga R. Air lime mortars: What else do we need to know to apply them in conservation and rehabilitation interventions? A review. Constr. Build. Mater. 2017;157:132–140. doi: 10.1016/j.conbuildmat.2017.09.080. DOI
Barnat-Hunek D., Siddigue R., Klimek B., Franus M. The use of zeolite, lightweight aggregate and boiler slag in restoration renders. Constr. Build. Mater. 2017;142:162–174. doi: 10.1016/j.conbuildmat.2017.03.079. DOI
Ozen S., Goncuoglu M.C., Liguouri B., de Gennaro B., Cappeletti P., Gatta G.D., Iucolano F., Colella C. A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders. Constr. Build. Mater. 2016;105:46–61. doi: 10.1016/j.conbuildmat.2015.12.055. DOI
Pavlík V., Užáková M. Effect of curing conditions on the properties of lime, lime-metakaolin and lime-zeolite mortars. Constr. Build. Mater. 2016;102:14–25. doi: 10.1016/j.conbuildmat.2015.10.128. DOI
Martínez W., Alonso-Guzman E.M., Rubio J.C., Bedolla J.A., Velasco F.A., Torres A.A. Handmade hydrated lime mechanical motors mehavior, added with cactus sap and volcanic ash, for their use in colonial monument restoration and conservation. Rev. Constr. 2008;7:93–101.
Sala E., Giustina I., Plizzari G.A. In: Lime Mortar with Natural Pozzolana: Historical Issues and Mechanical Behavior, Structural Analysis of Historic Construction. D’Ayala D., Fodde E., editors. Taylor & Francis Group; London, UK: 2008. pp. 957–963.
Nozahic V., Amziane S., Torrent G., Saidi K., De Baynast H. Design of green concrete made of plant-derived aggregates and a pumice-lime binder. Cem. Concr. Res. 2012;34:231–241. doi: 10.1016/j.cemconcomp.2011.09.002. DOI
Sierra E.J., Miller S.A., Sakulich A.R., MacKenzie K., Barsoum M.W. Pozzolanic activity of diatomaceous earth. J. Am. Ceram. Soc. 2010;92:3406–3410. doi: 10.1111/j.1551-2916.2010.03886.x. DOI
Loganina V.I., Pyshkina I.S., Martyashin G.V. Effect of the supplement based on calcium hydrosilicates on the resistance of lime coatings. Mag. Civ. Eng. 2017;72:20–27. doi: 10.18720/MCE.72.3. DOI
Gameiro A., Silva A.S., Faria P., Grilo J., Branco T., Veiga R., Velosa A. Physical and chemical assessment of lime–metakaolin mortars: Influence of binder: Aggregate ratio. Cem. Concr. Compos. 2014;45:264–271. doi: 10.1016/j.cemconcomp.2013.06.010. DOI
Cachim P., Velosa A.L., Rocha F. Effect of Portuguese metakaolin on hydraulic lime concrete using different curing conditions. Constr. Build. Mater. 2010;24:71–78. doi: 10.1016/j.conbuildmat.2009.08.010. DOI
Bulut Ü. Use of perlite as a pozzolanic addition in lime mortars. GU J. Sci. 2010;23:305–313. doi: 10.1016/j.cemconcomp.2006.07.018. DOI
Bras A., Henriques F.M.A., Cidade M.T. Effect of environmental temperature and fly ash addition in hydraulic lime grout behavior. Constr. Build. Mater. 2010;24:1511–1517. doi: 10.1016/j.conbuildmat.2010.02.001. DOI
Nayaka R.R., Alegaram U.J., Jumaat M.Z., Yusoff S.B. Microstructural investigation and durability performance of high volume industrial by-products-based masonry mortars. Constr. Build. Mater. 2018;189:906–923. doi: 10.1016/j.conbuildmat.2018.09.020. DOI
Bediako M., Kevern J.T., Dodoo-Arhin D. Co-fired Ghanaian clay-palm kernel shells pozzolan: Thermogravimetric, Si-29 and Al-27 MA NMR characteristics. Constr. Build. Mater. 2017;153:430–435. doi: 10.1016/j.conbuildmat.2017.07.042. DOI
Cordeiro G.C., Toledo Filho R.G., Tavares L.M., Fairbairn E.M.R. Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Compos. 2008;30:410–418. doi: 10.1016/j.cemconcomp.2008.01.001. DOI
Pavia S., Walker R., Veale P., Wood A. Impact of the properties and reactivity of rice husk ash on lime mortar properties. J. Mater. Civ. Eng. 2014;26:04014066. doi: 10.1061/(ASCE)MT.1943-5533.0000967. DOI
Cortina M.G., Dominguez L.D., de Madrid E.U.A.T., de Madrid E.T.S.A. Aired-lime and chamotte hydraulic mortars. Mater. Constr. 2002;52:65–76. doi: 10.3989/mc.2002.v52.i266.335. DOI
Bakolas A., Aggelakopoulou E., Moroupoulou A. Evaluation of pozzolanic activity and physico-mechanical characteristics in ceramic powder-lime pastes. J. Therm. Anal. Calorim. 2008;92:345–351. doi: 10.1007/s10973-007-8858-1. DOI
Xu S.Q., Ma Q.L., Wang J.L., Wang L.L. Grouting performance improvement for natural hydraulic lime-based grout via incorporating silica fume and silicon-acrylic latex. Constr. Build. Mater. 2018;186:652–659. doi: 10.1016/j.conbuildmat.2018.07.056. DOI
Zhnag D.J., Zhao J.H., Wang D.M., Xu C.Y., Zhai M.Y., Ma X.D. Comparative study on the properties of three hydraulic lime mortar systems: Natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime-based mortar. Constr. Build. Mater. 2018;186:42–52. doi: 10.1016/j.conbuildmat.2018.07.053. DOI
Pavia S., Regan D. Influence of cement kiln dust on the physical properties of calcium lime mortars. Mater. Struct. 2010;43:381–391. doi: 10.1617/s11527-009-9496-9. DOI
Mar Barbero-Barrera M., Flores Medina N., Guardia-Martin C. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes. Constr. Build. Mater. 2017;149:599–611. doi: 10.1016/j.conbuildmat.2017.05.156. DOI
Silva F.C., Cruz N.C., Tarelho L.A.C., Rodrigues S.M. Use of biomass ash-based materials as soil fertilisers: Critical review of the existing regulatory framework. J. Clean. Prod. 2019;214:112–124. doi: 10.1016/j.jclepro.2018.12.268. DOI
Directive 2009/28EC, Official Journal of the European Union. [(accessed on 15 April 2009)]; Available online: https://eur-lex.europa.eu/eli/dir/2009/28/oj.
Katare V.D., Madurwar M.V. Use of processed biomass ash as a sustainable pozzolana. Curr. Sci. 2019;116:741–750. doi: 10.18520/cs/v116/i5/741-750. DOI
Martirena F., Monzo J. Vegetable ashes as Supplementary Cementitious Materials. Cem. Concr. Res. 2018;114:57–64. doi: 10.1016/j.cemconres.2017.08.015. DOI
Jankovský O., Pavlíková M., Sedmidubský D., Bouša D., Lojka M., Pokorný J., Záleská M., Pavlík Z. Study on pozzolana activity of wheat straw ash as potential admixture for blended cements. Ceram. Silik. 2017;61:327–339. doi: 10.13168/cs.2017.0032. DOI
Teixeira E.R., Mateus R., Camões A., Branco F.G. Quality and durability properties and life-cycle assessment of high volume biomass fly ash mortar. Constr. Build. Mater. 2019;197:195–207. doi: 10.1016/j.conbuildmat.2018.11.173. DOI
EN 459-1, Building Lime—Part 1: Definitions, Specifications and Conformity Criteria. European Committee for Standardization; Brussel, Belgium: 2015.
EN 1015-2, Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars. European Committee for Standardization; Brussel, Belgium: 1998.
EN 196-1, Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization; Brussel, Belgium: 2016.
EN 196-6, Methods of Testing Cement—Part 6: Determination of Fineness. European Committee for Standardization; Brussel, Belgium: 2010.
EN 196-5, Methods of Testing Cement—Part 5: Pozzolanicity Test for Pozzolanic Cement. European Committee for Standardization; Brussel, Belgium: 2011.
NF P 18-513, 2009. Pozzolanic Addition for Concrete—Metakaolin: Definitions, Specifications and Conformity Criteria, Annex A. Association Francaise de Normalisation; Paris, France: 2009.
EN 1015-3, Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization; Brussel, Belgium: 1999.
EN 1015-10, Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussel, Belgium: 1999.
EN 1015-11, Methods of Test for Mortar for Masonry—Part 10: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussel, Belgium: 1999.
EN 450-1, Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria. European Committee for Standardization; Brussel, Belgium: 2012.
EN 1015-18, Methods of Test for Mortar for Masonry—Part 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussel, Belgium: 2002.
Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envel. Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI
ISO 12572, Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties. International Organization for Standardization; Geneva, Switzerland: 2001.
Záleská M., Pavlík Z., Pavlíková M., Scheinherrová L., Pokorný J., Trník A., Svora P., Fořt J., Jankovský O., Suchorab Z., et al. Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technol. Environ. 2018;20:159–171. doi: 10.1007/s10098-017-1465-3. DOI
Kittipongvises S. Assessment of environmental impacts of limestone quarrying operations in Thailand. Environ. Clim. Technol. 2017;20:67–83. doi: 10.1515/rtuect-2017-0011. DOI
Sagastume Gutiérrez A., Van Caneghem J., Cogollos Martínez J.B., Vandecasteele C. Evaluation of the environmental performance of lime production in Cuba. J. Clean. Prod. 2012;31:126–136. doi: 10.1016/j.jclepro.2012.02.035. DOI
Alcántara V., Cadavid Y., Sánchez M., Uribe C., Echeverri-Uribe C., Morales J., Obando J., Amell A. A study case of energy efficiency, energy profile, and technological gap of combustion systems in the Colombian lime industry. Appl. Therm. Eng. 2018;128:393–401. doi: 10.1016/j.applthermaleng.2017.09.018. DOI
European Commission 2001 Integrated Pollution Prevention and Control (IPPC), Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries. [(accessed on 8 April 2019)]; Available online: http://www.epa.ie/downloads/advice/brefs/cement.pdf.
Pavlík Z., Fořt J., Záleská M., Pavlíková M., Trník A., Medved I., Keppert M., Koutsoukos P.G., Černý R. Energy-efficient thermal treatment of sewage sludge for its application in blended cements. J. Clean. Prod. 2016;112:409–419. doi: 10.1016/j.jclepro.2015.09.072. DOI
Valderrama C., Granados R., Cortina J.L., Gasol C.M., Guillem M., Josa A. Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production. J. Clean. Prod. 2013;51:205–213. doi: 10.1016/j.jclepro.2013.01.026. DOI
Xu C.H., Chen W., Hong J. Life-cycle environmental and economic assessment of sewage sludge treatment in China. J. Clean. Prod. 2014;67:79–87. doi: 10.1016/j.jclepro.2013.12.002. DOI
Tittarelli F., Moriconi G., Bonazza A. Atmospheric deterioration of cement plaster in a building exposed to a urban environment. J. Cult. Herit. 2008;9:203–206. doi: 10.1016/j.culher.2007.09.005. DOI
Pavlíková M., Pokorný J., Jankovský O., Záleská M., Vavro M., Souček K., Pavlík Z. The effect of the sodium sulphate solution exposure on properties and mechanical resistance of different kinds of renders. Ceram. Silik. 2018;62:311–324. doi: 10.13168/cs.2018.0027. DOI
Raverdy M., Brivot F., Paillére A.M., Dron R. Appréciation de I’Activité Pouzzolanique des Constituants Secondaires; Proceedings of the 7th International Congress on the Chemistry of Cement; Paris, France. 30 June–4 July 1980; Paris, France: Éditions Septima; 1980. pp. 36–41.
Memon S.A., Khan M.K. Ash blended cement composites: Eco-friendly and sustainable option for utilization of corncob ash. J. Clean. Prod. 2018;175:442–455. doi: 10.1016/j.jclepro.2017.12.050. DOI
Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chip ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI
Pachta V., Triantafyllaki S., Stefanidou M. Performance of lime-based mortars at elevated temperatures. Constr. Build. Mater. 2018;189:576–584. doi: 10.1016/j.conbuildmat.2018.09.027. DOI
Thomas J., Jennings H. The Science of Concrete. [(accessed on 19 December 2018)]; Available online: http://iti.northwestern.edu/cement/index.html.
Tang Z.J., Fang P., Huang J.H., Tang Z.X., Cen C.P. Investigation on thermodynamics characteristics of biomass thermal decomposition using TG/DSC method; Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering; Shenzhen, China. 19–20 September 2015; Amsterdam, The Netherlands: Atlantis Press; 2015. pp. 930–936.
James A.K., Thring R.W., Helle S., Ghuman H.S. Ash management review—Applications of biomass bottom ash. Energies. 2012;5:3856–3873. doi: 10.3390/en5103856. DOI
Gomez-Barea A., Vilches L., Campoy M., Fernandez-Pereira C. Plant optimization and ash recycling in fluidised waste gasification. Chem. Eng. J. 2009;146:227–236. doi: 10.1016/j.cej.2008.05.039. DOI
Duan L., Liu D., Chen X., Zhao C. Fly ash recirculation by bottom feeding on a circulating fluidized bed boiler co-burning coal sludge and coal. Appl. Energy. 2012;95:295–299. doi: 10.1016/j.apenergy.2012.02.063. DOI
Ciyer Ö., Rodriguez-Navarro C., Ruiz-Agudo E., Elsen J., Van Gemert D., Van Balen K. Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime. J. Mater. Sci. 2012;47:6151–6165. doi: 10.1007/s10853-012-6535-7. DOI
Dweck J., Buchler P.M., Coelho A.C.V., Cartledge F.K. Hydration of a Portland cement blended with calcium carbonate. Thermochim. Acta. 2000;346:105–113. doi: 10.1016/S0040-6031(99)00369-X. DOI
EN 998-1, Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. European Committee for Standardization; Brussel, Belgium: 2016.
Nogueira R., Ferreira Pinto A.P., Gomes A. Design and behaviour of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018;89:192–204. doi: 10.1016/j.cemconcomp.2018.03.005. DOI
Veiga M., Aguiar J., Carvalho S.A.S.F. Methodologies for characterization and repair of mortars of ancient buildings. In: Lourenço P., Roca P., editors. Historical Constructions. University of Minho; Guimães, Portugal: 2001.
Pavlíková M., Pavlík Z., Keppert M., Černý R. Salt transport and storage parameters of renovation plasters and their possible effects on restored buildings’ walls. Constr. Build. Mater. 2011;25:1205–1212. doi: 10.1016/j.conbuildmat.2010.09.034. DOI
Liuzzi S., Rubino C.H., Stefanizzi P., Petrella A., Boghetich A., Casavola C., Pappalettera G. Hygrothermal properties of clayed plasters with olive fibers. Constr. Build. Mater. 2018;158:24–32. doi: 10.1016/j.conbuildmat.2017.10.013. DOI
Van Balen K., Papayianni I., Van Hess R., Binda L., Waldum A. Introduction to requirements for and functions and properties of repair mortars. Mater. Struct. 2005;38:781–785. doi: 10.1007/BF02479291. DOI
Barbero-Barrera M.M., García-Santos A., Neila-González F.J. Thermal conductivity of lime mortars and calcined diatoms. Parameters influencing their performance and comparison with the traditional lime and mortars containing crushed marble used as renders. Energy Build. 2014;76:422–428. doi: 10.1016/j.enbuild.2014.02.065. DOI
Stefanidou M., Assael M., Antoniadis K., Matziaroglou G. Thermal conductivity of building materials employed in the preservation of traditional structures. Int. J. Thermophys. 2010;31:844–851. doi: 10.1007/s10765-010-0750-8. DOI
EN 1745, Masonry and Masonry Products—Methods for Determining Thermal Properties. European Committee for Standardization; Brussel, Belgium: 2012.
Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings