Release of Bisphenol A from Milled and 3D-Printed Dental Polycarbonate Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK 379421
Charles University
PROGRES Q29/1LF
Charles University
RVO 00023761-IE
Ministry of Health
PubMed
34640263
PubMed Central
PMC8510194
DOI
10.3390/ma14195868
PII: ma14195868
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-printing, bisphenol A, chromatography, dental prosthesis, mass spectrometry, milling, polycarbonate, splint,
- Publikační typ
- časopisecké články MeSH
Polycarbonates are polymers of bisphenol A (BPA), a well-known endocrine disruptor. This study evaluated the release of BPA from polycarbonate crowns that were (1) milled from Temp Premium Flexible (ZPF, Zirkonzahn, Italy) or Tizian Blank Polycarbonate (TBP, Schütz Dental, Germany), or (2) 3D-printed (Makrolon 2805, Covestro, Germany). Commercial prefabricated polycarbonate crowns (3M, USA) and milled poly(methyl methacrylate) (PMMA) crowns (Temp Basic, Zirkonzahn, Italy) were included for comparison. The crowns were stored at 37 °C in artificial saliva (AS) or methanol, which represented the worst-case scenario of BPA release. Extracts were collected after 1 day, 1 week, 1 month and 3 months. BPA concentrations were measured using liquid chromatography-tandem mass spectrometry. The amounts of released BPA were expressed in micrograms per gram of material (μg/g). After 1 day, the highest amounts of BPA were measured from milled polycarbonates, TBP (methanol: 32.2 ± 3.8 μg/g, AS: 7.1 ± 0.9 μg/g) and ZPF (methanol 22.8 ± 7.7 μg/g, AS: 0.3 ± 0.03 μg/g), followed by 3D-printed crowns (methanol: 11.1 ± 2.3 μg/g, AS: 0.1 ± 0.1 μg/g) and prefabricated crowns (methanol: 8.0 ± 1.6 μg/g, AS: 0.07 ± 0.02 μg/g). Between 1 week and 3 months, the average daily release of BPA in methanol and AS decreased below 2 μg/g and 0.6 μg/g, respectively. No BPA was released from PMMA in AS, and the cumulative amount released in methanol was 0.2 ± 0.06 μg/g. In conclusion, polycarbonates could be a relevant source of BPA, but the current tolerable daily intake of BPA (4 μg/kg body weight) should not be exceeded.
Zobrazit více v PubMed
Diamanti-Kandarakis E., Bourguignon J.-P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009;30:293–342. doi: 10.1210/er.2009-0002. PubMed DOI PMC
Vandenberg L.N., Maffini M.V., Sonnenschein C., Rubin B.S., Soto A.M. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr. Rev. 2009;30:75–95. doi: 10.1210/er.2008-0021. PubMed DOI PMC
Rochester J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol. 2013;42:132–155. doi: 10.1016/j.reprotox.2013.08.008. PubMed DOI
Vandenberg L.N., Colborn T., Hayes T.B., Heindel J.J., Jacobs D.R., Jr., Lee D.H., Shioda T., Soto A.M., vom Saal F.S., Welshons W.V., et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012;33:378–455. doi: 10.1210/er.2011-1050. PubMed DOI PMC
EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015;13:3978. doi: 10.2903/j.efsa.2015.3978. DOI
Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A.M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ. Health Perspect. 1996;104:298–305. doi: 10.1289/ehp.96104298. PubMed DOI PMC
Habib C.M., Kugel G. Estrogenicity of resin-based composites and sealants in dentistry. Environ. Health Perspect. 1996;104:808. doi: 10.1289/ehp.104-1469430. PubMed DOI PMC
Imai Y. Comments on “Determination of bisphenol A and related aromatic compounds released from bis-GMA-based composites and sealants by high performance liquid chromatography”. Environ. Health Perspect. 2000;108:A545–A546. doi: 10.1289/ehp.108-a545. PubMed DOI
Löfroth M., Ghasemimehr M., Falk A., Vult von Steyern P. Bisphenol A in dental materials—Existence, leakage and biological effects. Heliyon. 2019;5:e01711. doi: 10.1016/j.heliyon.2019.e01711. PubMed DOI PMC
Kechagias K., Anastasaki P., Kyriakidou M., Dedi K.D. Bisphenol A in Dentistry. Eur. J. Prosthodont. Restor. Dent. 2020;28:3–9. doi: 10.1922/EJPRD_01950Kechagias07. PubMed DOI
Testai E., Epstein M., Emri I., Hartemann P., Hoet P., Leitgeb N., Martínez Martinez L., Proykova A., Rizzo L., Rodriguez-Farré E., et al. The safety of the use of bisphenol A in medical devices. Regul. Toxicol. Pharmacol. 2016;79:106–107. doi: 10.1016/j.yrtph.2016.01.014. PubMed DOI
Van Landuyt K.L., Nawrot T., Geebelen B., De Munck J., Snauwaert J., Yoshihara K., Scheers H., Godderis L., Hoet P., Van Meerbeek B. How much do resin-based dental materials release? A meta-analytical approach. Dent. Mater. 2011;27:723–747. doi: 10.1016/j.dental.2011.05.001. PubMed DOI
Soderholm K.J., Mariotti A. BIS-GMA--based resins in dentistry: Are they safe? J. Am. Dent. Assoc. 1999;130:201–209. doi: 10.14219/jada.archive.1999.0169. PubMed DOI
De Nys S., Duca R.C., Vervliet P., Covaci A., Boonen I., Elskens M., Vanoirbeek J., Godderis L., Van Meerbeek B., Van Landuyt K.L. Bisphenol A as degradation product of monomers used in resin-based dental materials. Dent. Mater. 2021;37:1020–1029. doi: 10.1016/j.dental.2021.03.005. PubMed DOI
Suzuki K., Ishikawa K., Sugiyama K., Furuta H., Nishimura F. Content and Release of Bisphenol A from Polycarbonate Dental Products. Dent. Mater. J. 2000;19:389–395. doi: 10.4012/dmj.19.389. PubMed DOI
Watanabe M., Hase T., Imai Y. Change in the Bisphenol A Content in a Polycarbonate Orthodontic Bracket and Its Leaching Characteristics in Water. Dent. Mater. J. 2001;20:353–358. doi: 10.4012/dmj.20.353. PubMed DOI
Watanabe M. Degradation and formation of bisphenol A in polycarbonate used in dentistry. J. Med. Dent. Sci. 2004;51:1–6. doi: 10.11480/jmds.510101. PubMed DOI
Edelhoff D., Schweiger J., Prandtner O., Trimpl J., Stimmelmayr M., Güth J.F. CAD/CAM splints for the functional and esthetic evaluation of newly defined occlusal dimensions. Quintessence Int. 2017;48:181–191. doi: 10.3290/j.qi.a37641. PubMed DOI
Bradna P., Vrbova R., Fialova V., Housova D., Gojisova E. Formation of protective deposits by anti-erosive toothpastes—A microscopic study on enamel with artificial defects. Scanning. 2016;38:380–388. doi: 10.1002/sca.21281. PubMed DOI
Vitku J., Chlupacova T., Sosvorova L., Hampl R., Hill M., Heracek J., Bicikova M., Starka L. Development and validation of LC-MS/MS method for quantification of bisphenol A and estrogens in human plasma and seminal fluid. Talanta. 2015;140:62–67. doi: 10.1016/j.talanta.2015.03.013. PubMed DOI
Kolatorova Sosvorova L., Chlupacova T., Vitku J., Vlk M., Heracek J., Starka L., Saman D., Simkova M., Hampl R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta. 2017;174:21–28. doi: 10.1016/j.talanta.2017.05.070. PubMed DOI
Simkova M., Tichy A., Duskova M., Bradna P. Dental composites—A low-dose source of bisphenol A? Phys. Res. 2020;69:S295–S304. doi: 10.33549/physiolres.934518. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 7 May 2021)]. Available online: http://www.r-project.org/
De Nys S., Putzeys E., Vervliet P., Covaci A., Boonen I., Elskens M., Vanoirbeek J., Godderis L., Van Meerbeek B., Van Landuyt K.L., et al. A novel high sensitivity UPLC-MS/MS method for the evaluation of bisphenol A leaching from dental materials. Sci. Rep. 2018;8:6981. doi: 10.1038/s41598-018-24815-z. PubMed DOI PMC
Polydorou O., König A., Hellwig E., Kümmerer K. Long-term release of monomers from modern dental-composite materials. Eur. J. Oral Sci. 2009;117:68–75. doi: 10.1111/j.1600-0722.2008.00594.x. PubMed DOI
Imai Y., Komabayashi T. Elution of Bisphenol A from Composite Resin: A Model Experiment. Dent. Mater. J. 2000;19:133–138. doi: 10.4012/dmj.19.133. PubMed DOI
Becher R., Wellendorf H., Sakhi A.K., Samuelsen J.T., Thomsen C., Bølling A.K., Kopperud H.M. Presence and leaching of bisphenol a (BPA) from dental materials. Acta Biomater. Odontol. Scand. 2018;4:56–62. doi: 10.1080/23337931.2018.1476869. PubMed DOI PMC
Bair H.E., Falcone D.R., Hellman M.Y., Johnson G.E., Kelleher P.G. Hydrolysis of polycarbonate to yield BPA. J. Appl. Polym. Sci. 1981;26:1777–1786. doi: 10.1002/app.1981.070260603. DOI
Golovoy A., Zinbo M. Water sorption and hydrolytic stability of polycarbonates. Polym. Eng. Sci. 1989;29:1733–1737. doi: 10.1002/pen.760292402. DOI
Brunelle D.J. Polycarbonates. In: Mark H.F., editor. Encyclopedia of Polymer Science and Technology. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 2014. DOI
Yoo Y.-E., Woo S.-W., Kim S.K. Injection molding without prior drying process by the gas counter pressure. Polym. Eng. Sci. 2012;52:2417–2423. doi: 10.1002/pen.23196. DOI
Lin R., Yu C.-H., Sun J. Mechanical properties and cytotoxicity of three-dimensional printing polycarbonate for occlusal splints. Shanghai Kou Qiang Yi Xue. 2019;28:467–471. PubMed
Hamanaka I., Iwamoto M., Lassila L., Vallittu P., Shimizu H., Takahashi Y. Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol. Scand. 2014;72:859–865. doi: 10.3109/00016357.2014.919662. PubMed DOI