Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture

. 2020 Jun 03 ; 13 (11) : . [epub] 20200603

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32503182

Grantová podpora
19-00262S Grantová Agentura České Republiky

Worldwide, Portland cement-based materials are the most commonly used construction materials. As the Portland cement industry negatively affects the environment due to the excessive emission of carbon dioxide and depletion of natural resources, new alternative materials are being searched. Therefore, the goal of the paper was to design and develop eco-friendly, low-cost, and sustainable magnesium oxychloride cement (MOC)-based building material with a low carbon footprint, which is characterized by reduced porosity, high mechanical resistance, and durability in terms of water damage. To make new material eco-efficient and functional, silica sand which was used in the composition of the control composite mixture was partially replaced with coal fly ash (FA), a byproduct of coal combustion. The chemical and mineralogical composition, morphology, and particle morphology of FA were characterized. For silica sand, FA, and MgO, specific density, loose bulk density, and particle size distribution were measured. Additionally, Blaine specific surface was for FA and MgO powder assessed. The workability of fresh mixtures was characterized by spread diameter. For the hardened MOC composites, basic structural, mechanical, hygric, and thermal properties were measured. Moreover, the phase composition of precipitated MOC phases and their thermal stability were investigated for MOC-FA pastes. The use of FA led to the great decrease in porosity and pore size compared to the control material with silica sand as only filler which was in agreement with the workability of fresh composite mixtures. The compressive strength increased with the replacement of silica sand with FA. On the contrary, the flexural strength slightly decreased with silica sand substitution ratio. It clearly proved the assumption of the filler function of FA, whereas its assumed reactivity with MOC cement components was not proven. The water transport and storage were significantly reduced by the use of FA in composites, which greatly improved their resistance against moisture damage. The heat transport and storage parameters were only slightly affected by FA incorporation in composite mixtures.

Zobrazit více v PubMed

Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015. DOI

Bhagatg Singh G.V.P., Subramaniam K.V.L. Production and characterization of low-energy Portland composite cement from post-industrial waste. J. Clean. Prod. 2019;239:118024. doi: 10.1016/j.jclepro.2019.118024. DOI

Lippiatt N., Ling T.Ch., Pan S.Y. Towards carbon-neutral construction materials: Carbonation of cement-based materials and the future perspective. J. Build. Eng. 2020;28:101062. doi: 10.1016/j.jobe.2019.101062. DOI

Giesekam J., Barrett J.R., Taylor P. Construction sector views on low carbon building materials. Build. Res. Inf. 2016;44:423–444. doi: 10.1080/09613218.2016.1086872. DOI

Gartner E., Sui T. Alternative cement clinkers. Cem. Concr. Res. 2018;114:27–39. doi: 10.1016/j.cemconres.2017.02.002. DOI

Wang L., Chen L., Provis J.L., Tsang D.C.W., Poon Ch.S. Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cem. Concr. Compos. 2020;106:103489. doi: 10.1016/j.cemconcomp.2019.103489. DOI

Unluer C. Investigating the Carbonation and Mechanical Performance of Reactive MgO Cement Based Concrete Mixes. Nano Hybrids Compos. 2018;19:23–33. doi: 10.4028/www.scientific.net/NHC.19.23. DOI

Tang S., Hu Y., Ren W., Yu P., Huang Q., Qi X., Li Y., Chen E. Modeling on the hydration and leaching of eco-friendly magnesium oxychloride cement paste at the microscale. Constr. Build. Mater. 2019;204:684–690. doi: 10.1016/j.conbuildmat.2019.01.232. DOI

Mo L., Panesar D.K. Accelerated carbonation — A potential approach to sequester CO2 in cement paste containing slag and reactive MgO. Cem. Concr. Compos. 2013;43:69–77. doi: 10.1016/j.cemconcomp.2013.07.001. DOI

Pu L., Unluer C. Investigation of carbonation depth and its influence on the performance and microstructure of MgO cement and PC mixes. Constr. Build. Mater. 2016;120:349–363. doi: 10.1016/j.conbuildmat.2016.05.067. DOI

Jankovský O., Lojka M., Lauermannová A., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D. Carbon Dioxide Uptake by MOC-Based Materials. App. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI

Vandeperre L.J., Al-Tabbaa A. Accelerated carbonation of reactive MgO cements. Adv. Cem. Res. 2007;19:67–79. doi: 10.1680/adcr.2007.19.2.67. DOI

Power I.M., Dipple G.M., Francis P.S. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem. Concr. Compos. 2017;78:97–107. doi: 10.1016/j.cemconcomp.2017.01.003. DOI

Sorel S. On a New Magnesium Cement. CR Acad. Sci. 1867;65:102–104.

Lojka M., Jankovský O., Jiříčková A., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlík Z., Pavlíková M. Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2∙MgCl2∙8H2O. Materials. 2020;13:767. doi: 10.3390/ma13030767. PubMed DOI PMC

Huang T., Yuan Q., Deng D. The role of phosphoric acid in improving the strength of magnesium oxychloride cement pastes with large molar ratios of H2O/MgCl2. Cem. Concr. Compos. 2019;97:379–386. doi: 10.1016/j.cemconcomp.2019.01.013. DOI

Jiříčková A., Lojka M., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Jankovský O. Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2∙MgCl2∙8H2O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. PubMed DOI

Zhou Z., Chen H., Li Z., Li H. Simulation of the properties of MgO-MgfCl2-H2O system by thermodynamic method. Cem. Concr. Res. 2015;68:105–111. doi: 10.1016/j.cemconres.2014.11.006. DOI

Záleská M., Pavlíková M., Jankovský O., Lojka M., Pivák A., Pavlík Z. Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate. Materials. 2018;11:931. doi: 10.3390/ma11060931. PubMed DOI PMC

Li Y., Yu H., Zheng L., Wen J., Wu C., Tan Y. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Constr. Build. Mater. 2013;38:1–7. doi: 10.1016/j.conbuildmat.2012.06.016. DOI

Walling S.A., Provis J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016;116:4170–4204. doi: 10.1021/acs.chemrev.5b00463. PubMed DOI

Záleská M., Pavlíková M., Jankovský O., Lojka M., Antončík F., Pivák A., Pavlík Z. Influence of waste plastic aggregate and water-repellent additive on the properties of lightweight magnesium oxychloride cement composite. Appl. Sci. 2019;9:5463.

Dehua D. The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement. Cem. Concr. Res. 2003;33:1311–1317.

Chen X., Zhang T., Bi W., Cheeseman Ch. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI

Xu K., Xi J., Guo Y., Dong S. Effects of a new modifier on the water-resistance of magnesia cement tiles. Solid. State. Sci. 2012;14:10–14. doi: 10.1016/j.solidstatesciences.2011.08.009. DOI

Guo Y., Zhang Y., Soe K., Hutchinson W.D., Timmers H., Poblete M.R. Effect of fly ash on mechanical properties of magnesium cement under water attack. Struct. Concr. 2019:1–19. doi: 10.1002/suco.201900329. DOI

He P., Poon C.S., Tsang D.C.W. Effect of pulverized fuel ash and CO2 curing on the water resistance of magnesium oxychloride cement (MOC) Cem. Concr. Res. 2017;94:115–122. doi: 10.1016/j.cemconres.2017.03.005. DOI

Chau C.K., Chan J., Li Z. Influence of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI

Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116.

Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618-19. ASTM International; West Conshohocken, PA, USA: 2019.

Methods of Testing Cement — Part 6: Determination of Fineness, EN 196-6. European Committee for Standardization; Brussels, Belgium: 2010.

Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method, EN 933-1. European Committee for Standardization; Brussels, Belgium: 2012.

Binders for Magnesite Screeds—Caustic Magnesia and Magnesium Chloride—Part 2: Test Methods, EN 14016-2. European Committee for Standardization; Brussels, Belgium: 2004.

Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table), EN 1015-3. European Committee for Standardization; Brussels, Belgium: 1999.

Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar, EN 1015-10. European Committee for Standardization; Brussels, Belgium: 1999.

Pavlík Z., Pokorný J., Pavlíková M., Zemanová L., Záleská M., Vyšvařil M., Žižlavský T. Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings. Materials. 2019;12:3557. doi: 10.3390/ma12213557. PubMed DOI PMC

Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar, EN 1015-11. European Committee for Standardization; Brussels, Belgium: 1999.

Natural Stone Test Methods—Determination of Water Absorption at Atmospheric Pressure, EN 13755. European Committee for Standardization; Brussels, Belgium: 2008.

Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., et al. Interlaboratory Comparison of Hygric Properties of Porous Building Materials. J. Therm. Envel. Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI

Methods of Test for Mortar for Masonry—Part 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar, EN 1015-18. European Committee for Standardization; Brussels, Belgium: 2002.

Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envel. Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI

Pavlík Z., Černý R. Determination of moisture diffusivity as a function of both moisture and temperature. Int. J. Thermophys. 2012;33:1704–1714. doi: 10.1007/s10765-011-1006-y. DOI

Ma J., Zhao Y., Wang L., Wang J. Effect of Magnesium oxychloride Cement on Stabilization/Solidification of Sewage Sludge. Constr. Build. Mater. 2010;24:79–83.

Hall D.A., Stevens R., El-Jazairi B. The effect of retarders on the microstructure and mechanical properties of magnesia–phosphate cement mortar. Cem. Concr. Res. 2001;31:455–465. doi: 10.1016/S0008-8846(00)00501-9. DOI

Biel T.D., Lee H. Magnesium Oxychloride Cement Concrete with Recycled Tire Rubber. Transp. Res. Rec. 1996;1561:6–12. doi: 10.1177/0361198196156100102. DOI

Misra A.K., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI

Shehab H.K., Eisa A.S., Wahba A.M. Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr. Build. Mater. 2016;126:560–565. doi: 10.1016/j.conbuildmat.2016.09.059. DOI

Mindess S., Young J.F., Darwin D. Concrete. Prentice Hall; Engelwood Cliffs, NJ, USA: 2002.

Mehta P.K. Concrete Structure Properties and Materials. Prentice Hall; Engelwood Cliffs, NJ, USA: 1986.

Brunauer S., Emmet P.H., Teller W.E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI

Brunauer S., Deming L.S., Deming E.W., Teller E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940;62:1723–1732. doi: 10.1021/ja01864a025. DOI

Hansen K.K. Sorption Isotherms—A Catalogue, Technical Report 162/86. TU Denmark; Lyngby, Danmark: 1986.

Derluyn H., Derome D., Carmeliet J., Stora E., Barbarulo R. Hysteretic moisture behavior of concrete: modelling and analysis. Cem. Concr. Res. 2012;42:1379–1388. doi: 10.1016/j.cemconres.2012.06.010. DOI

Fredriksson M., Thybring E.E. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose. 2018;25:4477–4485. doi: 10.1007/s10570-018-1898-9. DOI

Xia S., Xing P., Gao S. Studies on the basic compounds of magnesia cement: the thermal behaviour of magnesium chlorides. Thermochim. Acta. 1991;183:349–363. doi: 10.1016/0040-6031(91)80471-T. DOI

Dinnebier R.E., Halasz I., Freyer D. The crystal structures of two anhydrous magnesium hydroxychloride phases from in situ synchrotron powder diffraction data. Z. Anorg. Allg. Chem. 2011;637:1458–1462. doi: 10.1002/zaac.201100139. DOI

He P., Poon Ch.S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...