Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00262S
Grantová Agentura České Republiky
PubMed
32503182
PubMed Central
PMC7321478
DOI
10.3390/ma13112537
PII: ma13112537
Knihovny.cz E-zdroje
- Klíčová slova
- coal fly ash, hygric and thermal parameters, magnesium oxychloride cement, mechanical resistance, sand substitution, structural properties, thermal stability,
- Publikační typ
- časopisecké články MeSH
Worldwide, Portland cement-based materials are the most commonly used construction materials. As the Portland cement industry negatively affects the environment due to the excessive emission of carbon dioxide and depletion of natural resources, new alternative materials are being searched. Therefore, the goal of the paper was to design and develop eco-friendly, low-cost, and sustainable magnesium oxychloride cement (MOC)-based building material with a low carbon footprint, which is characterized by reduced porosity, high mechanical resistance, and durability in terms of water damage. To make new material eco-efficient and functional, silica sand which was used in the composition of the control composite mixture was partially replaced with coal fly ash (FA), a byproduct of coal combustion. The chemical and mineralogical composition, morphology, and particle morphology of FA were characterized. For silica sand, FA, and MgO, specific density, loose bulk density, and particle size distribution were measured. Additionally, Blaine specific surface was for FA and MgO powder assessed. The workability of fresh mixtures was characterized by spread diameter. For the hardened MOC composites, basic structural, mechanical, hygric, and thermal properties were measured. Moreover, the phase composition of precipitated MOC phases and their thermal stability were investigated for MOC-FA pastes. The use of FA led to the great decrease in porosity and pore size compared to the control material with silica sand as only filler which was in agreement with the workability of fresh composite mixtures. The compressive strength increased with the replacement of silica sand with FA. On the contrary, the flexural strength slightly decreased with silica sand substitution ratio. It clearly proved the assumption of the filler function of FA, whereas its assumed reactivity with MOC cement components was not proven. The water transport and storage were significantly reduced by the use of FA in composites, which greatly improved their resistance against moisture damage. The heat transport and storage parameters were only slightly affected by FA incorporation in composite mixtures.
Zobrazit více v PubMed
Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015. DOI
Bhagatg Singh G.V.P., Subramaniam K.V.L. Production and characterization of low-energy Portland composite cement from post-industrial waste. J. Clean. Prod. 2019;239:118024. doi: 10.1016/j.jclepro.2019.118024. DOI
Lippiatt N., Ling T.Ch., Pan S.Y. Towards carbon-neutral construction materials: Carbonation of cement-based materials and the future perspective. J. Build. Eng. 2020;28:101062. doi: 10.1016/j.jobe.2019.101062. DOI
Giesekam J., Barrett J.R., Taylor P. Construction sector views on low carbon building materials. Build. Res. Inf. 2016;44:423–444. doi: 10.1080/09613218.2016.1086872. DOI
Gartner E., Sui T. Alternative cement clinkers. Cem. Concr. Res. 2018;114:27–39. doi: 10.1016/j.cemconres.2017.02.002. DOI
Wang L., Chen L., Provis J.L., Tsang D.C.W., Poon Ch.S. Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cem. Concr. Compos. 2020;106:103489. doi: 10.1016/j.cemconcomp.2019.103489. DOI
Unluer C. Investigating the Carbonation and Mechanical Performance of Reactive MgO Cement Based Concrete Mixes. Nano Hybrids Compos. 2018;19:23–33. doi: 10.4028/www.scientific.net/NHC.19.23. DOI
Tang S., Hu Y., Ren W., Yu P., Huang Q., Qi X., Li Y., Chen E. Modeling on the hydration and leaching of eco-friendly magnesium oxychloride cement paste at the microscale. Constr. Build. Mater. 2019;204:684–690. doi: 10.1016/j.conbuildmat.2019.01.232. DOI
Mo L., Panesar D.K. Accelerated carbonation — A potential approach to sequester CO2 in cement paste containing slag and reactive MgO. Cem. Concr. Compos. 2013;43:69–77. doi: 10.1016/j.cemconcomp.2013.07.001. DOI
Pu L., Unluer C. Investigation of carbonation depth and its influence on the performance and microstructure of MgO cement and PC mixes. Constr. Build. Mater. 2016;120:349–363. doi: 10.1016/j.conbuildmat.2016.05.067. DOI
Jankovský O., Lojka M., Lauermannová A., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D. Carbon Dioxide Uptake by MOC-Based Materials. App. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI
Vandeperre L.J., Al-Tabbaa A. Accelerated carbonation of reactive MgO cements. Adv. Cem. Res. 2007;19:67–79. doi: 10.1680/adcr.2007.19.2.67. DOI
Power I.M., Dipple G.M., Francis P.S. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem. Concr. Compos. 2017;78:97–107. doi: 10.1016/j.cemconcomp.2017.01.003. DOI
Sorel S. On a New Magnesium Cement. CR Acad. Sci. 1867;65:102–104.
Lojka M., Jankovský O., Jiříčková A., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlík Z., Pavlíková M. Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2∙MgCl2∙8H2O. Materials. 2020;13:767. doi: 10.3390/ma13030767. PubMed DOI PMC
Huang T., Yuan Q., Deng D. The role of phosphoric acid in improving the strength of magnesium oxychloride cement pastes with large molar ratios of H2O/MgCl2. Cem. Concr. Compos. 2019;97:379–386. doi: 10.1016/j.cemconcomp.2019.01.013. DOI
Jiříčková A., Lojka M., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Jankovský O. Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2∙MgCl2∙8H2O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. PubMed DOI
Zhou Z., Chen H., Li Z., Li H. Simulation of the properties of MgO-MgfCl2-H2O system by thermodynamic method. Cem. Concr. Res. 2015;68:105–111. doi: 10.1016/j.cemconres.2014.11.006. DOI
Záleská M., Pavlíková M., Jankovský O., Lojka M., Pivák A., Pavlík Z. Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate. Materials. 2018;11:931. doi: 10.3390/ma11060931. PubMed DOI PMC
Li Y., Yu H., Zheng L., Wen J., Wu C., Tan Y. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Constr. Build. Mater. 2013;38:1–7. doi: 10.1016/j.conbuildmat.2012.06.016. DOI
Walling S.A., Provis J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016;116:4170–4204. doi: 10.1021/acs.chemrev.5b00463. PubMed DOI
Záleská M., Pavlíková M., Jankovský O., Lojka M., Antončík F., Pivák A., Pavlík Z. Influence of waste plastic aggregate and water-repellent additive on the properties of lightweight magnesium oxychloride cement composite. Appl. Sci. 2019;9:5463.
Dehua D. The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement. Cem. Concr. Res. 2003;33:1311–1317.
Chen X., Zhang T., Bi W., Cheeseman Ch. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI
Xu K., Xi J., Guo Y., Dong S. Effects of a new modifier on the water-resistance of magnesia cement tiles. Solid. State. Sci. 2012;14:10–14. doi: 10.1016/j.solidstatesciences.2011.08.009. DOI
Guo Y., Zhang Y., Soe K., Hutchinson W.D., Timmers H., Poblete M.R. Effect of fly ash on mechanical properties of magnesium cement under water attack. Struct. Concr. 2019:1–19. doi: 10.1002/suco.201900329. DOI
He P., Poon C.S., Tsang D.C.W. Effect of pulverized fuel ash and CO2 curing on the water resistance of magnesium oxychloride cement (MOC) Cem. Concr. Res. 2017;94:115–122. doi: 10.1016/j.cemconres.2017.03.005. DOI
Chau C.K., Chan J., Li Z. Influence of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI
Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618-19. ASTM International; West Conshohocken, PA, USA: 2019.
Methods of Testing Cement — Part 6: Determination of Fineness, EN 196-6. European Committee for Standardization; Brussels, Belgium: 2010.
Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method, EN 933-1. European Committee for Standardization; Brussels, Belgium: 2012.
Binders for Magnesite Screeds—Caustic Magnesia and Magnesium Chloride—Part 2: Test Methods, EN 14016-2. European Committee for Standardization; Brussels, Belgium: 2004.
Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table), EN 1015-3. European Committee for Standardization; Brussels, Belgium: 1999.
Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar, EN 1015-10. European Committee for Standardization; Brussels, Belgium: 1999.
Pavlík Z., Pokorný J., Pavlíková M., Zemanová L., Záleská M., Vyšvařil M., Žižlavský T. Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings. Materials. 2019;12:3557. doi: 10.3390/ma12213557. PubMed DOI PMC
Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar, EN 1015-11. European Committee for Standardization; Brussels, Belgium: 1999.
Natural Stone Test Methods—Determination of Water Absorption at Atmospheric Pressure, EN 13755. European Committee for Standardization; Brussels, Belgium: 2008.
Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Cerny R., Pavlik Z., Hall C., Kumaran K., Pel L., et al. Interlaboratory Comparison of Hygric Properties of Porous Building Materials. J. Therm. Envel. Build. Sci. 2004;27:307–325. doi: 10.1177/1097196304042119. DOI
Methods of Test for Mortar for Masonry—Part 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar, EN 1015-18. European Committee for Standardization; Brussels, Belgium: 2002.
Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envel. Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI
Pavlík Z., Černý R. Determination of moisture diffusivity as a function of both moisture and temperature. Int. J. Thermophys. 2012;33:1704–1714. doi: 10.1007/s10765-011-1006-y. DOI
Ma J., Zhao Y., Wang L., Wang J. Effect of Magnesium oxychloride Cement on Stabilization/Solidification of Sewage Sludge. Constr. Build. Mater. 2010;24:79–83.
Hall D.A., Stevens R., El-Jazairi B. The effect of retarders on the microstructure and mechanical properties of magnesia–phosphate cement mortar. Cem. Concr. Res. 2001;31:455–465. doi: 10.1016/S0008-8846(00)00501-9. DOI
Biel T.D., Lee H. Magnesium Oxychloride Cement Concrete with Recycled Tire Rubber. Transp. Res. Rec. 1996;1561:6–12. doi: 10.1177/0361198196156100102. DOI
Misra A.K., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI
Shehab H.K., Eisa A.S., Wahba A.M. Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr. Build. Mater. 2016;126:560–565. doi: 10.1016/j.conbuildmat.2016.09.059. DOI
Mindess S., Young J.F., Darwin D. Concrete. Prentice Hall; Engelwood Cliffs, NJ, USA: 2002.
Mehta P.K. Concrete Structure Properties and Materials. Prentice Hall; Engelwood Cliffs, NJ, USA: 1986.
Brunauer S., Emmet P.H., Teller W.E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI
Brunauer S., Deming L.S., Deming E.W., Teller E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940;62:1723–1732. doi: 10.1021/ja01864a025. DOI
Hansen K.K. Sorption Isotherms—A Catalogue, Technical Report 162/86. TU Denmark; Lyngby, Danmark: 1986.
Derluyn H., Derome D., Carmeliet J., Stora E., Barbarulo R. Hysteretic moisture behavior of concrete: modelling and analysis. Cem. Concr. Res. 2012;42:1379–1388. doi: 10.1016/j.cemconres.2012.06.010. DOI
Fredriksson M., Thybring E.E. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose. 2018;25:4477–4485. doi: 10.1007/s10570-018-1898-9. DOI
Xia S., Xing P., Gao S. Studies on the basic compounds of magnesia cement: the thermal behaviour of magnesium chlorides. Thermochim. Acta. 1991;183:349–363. doi: 10.1016/0040-6031(91)80471-T. DOI
Dinnebier R.E., Halasz I., Freyer D. The crystal structures of two anhydrous magnesium hydroxychloride phases from in situ synchrotron powder diffraction data. Z. Anorg. Allg. Chem. 2011;637:1458–1462. doi: 10.1002/zaac.201100139. DOI
He P., Poon Ch.S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI
Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Use
Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly Ash
Magnesium Oxychloride Cement Composites with MWCNT for the Construction Applications
Magnesium Oxychloride Cement Composites Lightened with Granulated Scrap Tires and Expanded Glass