Magnesium Oxychloride Cement Composites with MWCNT for the Construction Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01866S
Grantová Agentura České Republiky
PubMed
33498565
PubMed Central
PMC7864339
DOI
10.3390/ma14030484
PII: ma14030484
Knihovny.cz E-zdroje
- Klíčová slova
- composites, magnesium oxychloride cement, multi-walled carbon nanotube (MWCNT),
- Publikační typ
- časopisecké články MeSH
In this contribution, composite materials based on magnesium oxychloride cement (MOC) with multi-walled carbon nanotubes (MWCNTs) used as an additive were prepared and characterized. The prepared composites contained 0.5 and 1 wt.% of MWCNTs, and these samples were compared with the pure MOC Phase 5 reference. The composites were characterized using a broad spectrum of analytical methods to determine the phase and chemical composition, morphology, and thermal behavior. In addition, the basic structural parameters, pore size distribution, mechanical strength, stiffness, and hygrothermal performance of the composites, aged 14 days, were also the subject of investigation. The MWCNT-doped composites showed high compactness, increased mechanical resistance, stiffness, and water resistance, which is crucial for their application in the construction industry and their future use in the design and development of alternative building products.
Zobrazit více v PubMed
Huntzinger D.N., Eatmon T.D. A life-cycle assessment of portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009;17:668–675. doi: 10.1016/j.jclepro.2008.04.007. DOI
Ruan S., Unluer C. Comparative life cycle assessment of reactive MgO and portland cement production. J. Clean. Prod. 2016;137:258–273. doi: 10.1016/j.jclepro.2016.07.071. DOI
Liska M., Al-Tabbaa A. Ultra-green construction: Reactive magnesia masonry products. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2009;162:185–196. doi: 10.1680/warm.2009.162.4.185. DOI
Al-Tabbaa A. Reactive magnesia cement. In: Pacheco-Torgal F., Jalali S., Labrincha J., John V.M., editors. Eco-Efficient Concrete. Woodhead Publishing; Cambridge, UK: 2013. pp. 523–543.
Bilinski H., Matkovic B., Mazuranic C., Zunic T.B. The formation of magnesium oxychloride phases in the systems MgO-MgCl2-H2O and NaOH-MgCl2-H2O. J. Am. Ceram. Soc. 1984;67:266–269. doi: 10.1111/j.1151-2916.1984.tb18844.x. DOI
Urwongse L., Sorrell C.A. The system MgO-MgCl2-H2O at 23 °C. J. Am. Ceram. Soc. 1980;63:501–504. doi: 10.1111/j.1151-2916.1980.tb10752.x. DOI
Christensen A.N., Norby P., Hanson J.C. Chemical reactions in the system MgO-MgCl2-H2O followed by time-resolved synchrotron X-ray powder diffraction. J. Solid State Chem. 1995;114:556–559. doi: 10.1006/jssc.1995.1085. DOI
Matkovic B., Popovic S., Rogic V., Zunic T., Young J.F. Reaction products in magnesium oxychloride cement pastes. System MgO-MgCl2-H2O. J. Am. Ceram. Soc. 1977;60:504–507. doi: 10.1111/j.1151-2916.1977.tb14093.x. DOI
Dinnebier R.E., Freyer D., Bette S., Oestreich M. 9Mg(OH)2·MgCl2·4H2O, a high temperature phase of the magnesia binder system. Inorg. Chem. 2010;49:9770–9776. doi: 10.1021/ic1004566. PubMed DOI
Dinnebier R.E., Oestreich M., Bette S., Freyer D. 2Mg(OH)2·MgCl2·2H2O and 2Mg(OH)2·MgCl2·4H2O, two high temperature phases of the magnesia cement system. Z. Anorg. Allg. Chem. 2012;638:628–633. doi: 10.1002/zaac.201100497. DOI
Pannach M., Bette S., Freyer D. Solubility equilibria in the system MgO-MgCl2-H2O from 298 to 393 K. J. Chem. Eng. Data. 2017;62:1384–1396. doi: 10.1021/acs.jced.6b00928. DOI
Montle J.F., Mayhan K.G. The role of magnesium oxychloride as a fire-resistive material. Fire Technol. 1974;10:201–210. doi: 10.1007/BF02588845. DOI
Xu B., Ma H., Hu C., Yang S., Li Z.J.C., Materials B. Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites. Constr. Build. Mater. 2016;102:613–619. doi: 10.1016/j.conbuildmat.2015.10.205. DOI
Beaudoin J.J., Ramachandran V.S. Strength development in magnesium oxychloride and other cements. Cem. Concr. Res. 1975;5:617–630. doi: 10.1016/0008-8846(75)90062-9. DOI
Qiao H., Cheng Q., Jinlei W., Yingying S. The application review of magnesium oxychloride cement. J. Chem. Pharm. Res. 2014;6:180–185.
Wang Y., Wei L., Yu J., Yu K. Mechanical properties of high ductile magnesium oxychloride cement-based composites after water soaking. Cem. Concr. Compos. 2019;97:248–258. doi: 10.1016/j.cemconcomp.2018.12.028. DOI
Deng D. The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement. Cem. Concr. Res. 2003;33:1311–1317. doi: 10.1016/S0008-8846(03)00043-7. DOI
Luo X., Fan W., Li C., Wang Y., Yang H., Liu X., Yang S. Effect of hydroxyacetic acid on the water resistance of magnesium oxychloride cement. Constr. Build. Mater. 2020;246:118428. doi: 10.1016/j.conbuildmat.2020.118428. DOI
He P., Poon C.S., Tsang D.C.W. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC) Constr. Build. Mater. 2017;147:519–524. doi: 10.1016/j.conbuildmat.2017.04.187. DOI
Guo Y., Zhang Y., Soe K., Hutchison W.D., Timmers H., Poblete M.R. Effect of fly ash on mechanical properties of magnesium oxychloride cement under water attack. Struct. Concr. 2020;21:1181–1199. doi: 10.1002/suco.201900329. DOI
Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI
Jirickova A., Lojka M., Lauermannova A.M., Antonacik F., Sedmidubsky D., Pavlikova M., Zaleska M., Pavlik Z., Jankovsky O. Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2·MgCl2·8H2O. Appl. Sci. 2020;10:15. doi: 10.3390/app10051683. DOI
Lojka M., Jankovský O., Jiříčková A., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlík Z. Thermal stability and kinetics of formation of magnesium oxychloride phase 3Mg(OH)2∙MgCl2∙8H2O. Materials. 2020;13:767. doi: 10.3390/ma13030767. PubMed DOI PMC
Eubank W.R. Calcination studies of magnesium oxides. J. Am. Ceram. Soc. 1951;34:225–229. doi: 10.1111/j.1151-2916.1951.tb11644.x. DOI
Fischer H.C. Calcination of calcite: I, Effect of heating rate and temperature on bulk density of calcium oxide. J. Am. Ceram. Soc. 1955;38:245–251. doi: 10.1111/j.1151-2916.1955.tb14939.x. DOI
Fischer H.C. Calcination of calcite: II, Size and growth rate of calcium oxide crystallites. J. Am. Ceram. Soc. 1955;38:284–288. doi: 10.1111/j.1151-2916.1955.tb14946.x. DOI
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D. Carbon dioxide uptake by MOC-based materials. Appl. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI
Pivák A., Pavlíková M., Záleská M., Lojka M., Jankovský O., Pavlík Z.J.M. Magnesium oxychloride cement composites with silica filler and coal fly ash admixture. Materials. 2020;13:2537. doi: 10.3390/ma13112537. PubMed DOI PMC
Pivák A., Pavlíková M., Záleská M., Lojka M., Lauermannová A.-M., Jankovský O., Pavlík Z.J.P. Low-carbon composite based on MOC, silica sand and ground porcelain insulator waste. Processes. 2020;8:829. doi: 10.3390/pr8070829. DOI
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Sedmidubský D. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI
Chuah S., Pan Z., Sanjayan J.G., Wang C.M., Duan W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 2014;73:113–124. doi: 10.1016/j.conbuildmat.2014.09.040. DOI
Du H., Gao H.J., Pang S.D. Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cem. Concr. Res. 2016;83:114–123. doi: 10.1016/j.cemconres.2016.02.005. DOI
Mohammed A., Sanjayan J.G., Nazari A., Al-Saadi N.T.K. Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature. Aust. J. Civ. Eng. 2017;15:61–71. doi: 10.1080/14488353.2017.1372849. DOI
Devasena M., Karthikeyan J. Investigation on strength properties of graphene oxide concrete. Int. J. Eng. Sci. Invent. Res. Dev. 2015;1:307–310.
Khare R., Bose S. Carbon nanotube based composites—A review. J. Miner. Mater. Charact. Eng. 2005;4:16. doi: 10.4236/jmmce.2005.41004. DOI
Baddour C.E., Briens C. Carbon nanotube synthesis: A review. Int. J. Chem. React. Eng. 2005:3. doi: 10.2202/1542-6580.1279. DOI
Shokrieh M.M., Saeedi A., Chitsazzadeh M. Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites. J. Nanostruct. Chem. 2013;3:20. doi: 10.1186/2193-8865-3-20. DOI
Jankovský O., Storti E., Moritz K., Luchini B., Jiříčková A., Aneziris C.G. Nano-functionalization of carbon-bonded alumina using graphene oxide and mwcnts. J. Eur. Ceram. Soc. 2018;38:4732–4738. doi: 10.1016/j.jeurceramsoc.2018.04.068. DOI
Jankovský O., Storti E., Schmidt G., Dudczig S., Sofer Z., Aneziris C.G. Unique wettability phenomenon of carbon-bonded alumina with advanced nanocoating. Appl. Mater. Today. 2018;13:24–31. doi: 10.1016/j.apmt.2018.08.002. DOI
Chen S.J., Collins F.G., Macleod A.J.N., Pan Z., Duan W.H., Wang C.M. Carbon nanotube–cement composites: A retrospect. IES J. Part A Civ. Struct. Eng. 2011;4:254–265. doi: 10.1080/19373260.2011.615474. DOI
Choi H., Kang D., Seo G.S., Chung W. Effect of some parameters on the compressive strength of MWCNT-cement composites. Adv. Mater. Sci. Eng. 2015;2015:340808. doi: 10.1155/2015/340808. DOI
Kim G.M., Nam I.W., Yang B., Yoon H.N., Lee H.K., Park S. Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Compos. Struct. 2019;227:111244. doi: 10.1016/j.compstruct.2019.111244. DOI
Yakovlev G., Pervushin G., Maeva I., Keriene J., Pudov I., Shaybadullina A., Buryanov A., Korzhenko A., Senkov S. Modification of construction materials with multi-walled carbon nanotubes. Procedia Eng. 2013;57:407–413. doi: 10.1016/j.proeng.2013.04.053. DOI
Makar J., Beaudoin J. Carbon nanotubes and their application in the construction industry. Spec. Publ. R. Soc. Chem. 2004;292:331–342.
EN 1015-10 . Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened 676 Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI
Záleská M., Pavlíková M., Pokorný J., Jankovský O., Pavlík Z., Černý R. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018;180:1–11. doi: 10.1016/j.conbuildmat.2018.05.250. DOI
EN 1015-11 . Methods of Test for Mortar for Masonry—Part 10: Determination of Flexural and Compressive Strength 678 of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
Wei L., Wang Y., Yu J., Xiao J., Xu S. Feasibility study of strain hardening magnesium oxychloride cement-based composites. Constr. Build. Mater. 2018;165:750–760. doi: 10.1016/j.conbuildmat.2018.01.041. DOI
Wang L. Study on the water resistance and mechanism of improving for magnesium oxychloride cement with phosphate and polymer. J. Funct. Mater. 2015;46:13066–13069.
EN 13755 . Natural Stone Test Methods: Determination of Water Absorption at Atmospheric Pressure. British Standards Institution; London, UK: 2008.
EN 1015–18 . Methods of Test for Mortar for Masonry. Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.
Adhikary S.K., Rudžionis Ž., Rajapriya R. The effect of carbon nanotubes on the flowability, mechanical, microstructural and durability properties of cementitious composite: An overview. Sustainability. 2020;12:8362. doi: 10.3390/su12208362. DOI
Jianli M., Youcai Z., Jinmei W., Li W. Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge. Constr. Build. Mater. 2010;24:79–83. doi: 10.1016/j.conbuildmat.2009.08.011. DOI
Hall D.A., Stevens R., El-Jazairi B.J.C. The effect of retarders on the microstructure and mechanical properties of magnesia–phosphate cement mortar. Cem. Concr. Res. 2001;31:455–465. doi: 10.1016/S0008-8846(00)00501-9. DOI
Manzur T., Yazdani N., Emon M.A.B. Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites. J. Mater. 2014;2014:1–8. doi: 10.1155/2014/960984. DOI
Zu M., Lu W., Li Q.-W., Zhu Y., Wang G., Chou T.-W. Characterization of carbon nanotube fiber compressive properties using tensile recoil measurement. ACS Nano. 2012;6:4288–4297. doi: 10.1021/nn300857d. PubMed DOI
Esmaeilzadeh H., Su J., Charmchi M., Sun H. Effect of hydrophobicity on the water flow in carbon nanotube—A molecular dynamics study. Theor. Appl. Mech. Lett. 2018;8:284–290. doi: 10.1016/j.taml.2018.04.007. DOI
Han Z., Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011;36:914–944. doi: 10.1016/j.progpolymsci.2010.11.004. DOI
Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Use