• This record comes from PubMed

Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2∙MgCl2∙8H2O

. 2020 Feb 07 ; 13 (3) : . [epub] 20200207

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-00262S Grantová Agentura České Republiky

In this paper, magnesium oxychloride cement with stoichiometry 3Mg(OH)2∙MgCl2∙8H2O (MOC 3-1-8) was prepared and characterized. The phase composition and kinetics of formation were studied by X-ray diffraction (XRD) and Rietveld analysis of obtained diffractograms. The chemical composition was analyzed using X-ray fluorescence (XRF) and energy dispersive spectroscopy (EDS). Furthermore, scanning electron microscopy (SEM) was used to study morphology, and Fourier Transform Infrared (FT-IR) spectroscopy was also used for the analysis of the prepared sample. In addition, thermal stability was tested using simultaneous thermal analysis (STA) combined with mass spectroscopy (MS). The obtained data gave evidence of the fast formation of MOC 3-1-8, which started to precipitate rapidly. As the length of the time of ripening increased, the amount of MgO decreased, while the amount of MOC 3-1-8 increased. The fast formation of the MOC 3-1-8 phase at an ambient temperature is important for its application in the production of low-energy construction materials, which corresponds with the challenges of a sustainable building industry.

See more in PubMed

Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015. DOI

Medina J.M., Sáez del Bosque I.F., Frías M., Sánchez de Rojas M.I., Medina C. Durability of new blended cements additioned with recycled biomass bottom ash from electric power plants. Constr. Build. Mater. 2019;225:429–440. doi: 10.1016/j.conbuildmat.2019.07.176. DOI

Bhagatg Singh G.V.P., Subramaniam K.V.L. Production and characterization of low-energy Portland composite cement from post-industrial waste. J. Clean. Prod. 2019;239 doi: 10.1016/j.jclepro.2019.118024. DOI

Souto-Martinez A., Arehart J.H., Srubar W.V. Cradle-to-gate CO2 emissions vs. in situ CO2 sequestration of structural concrete elements. Energy Build. 2018;167:301–311. doi: 10.1016/j.enbuild.2018.02.042. DOI

Boesch M.E., Koehler A., Hellweg S. Model for cradle-to-gate life cycle assessment of clinker production. Environ. Sci. Technol. 2009;43:7578–7583. doi: 10.1021/es900036e. PubMed DOI

Záleská M., Pavlíková M., Jankovský O., Lojka M., Pivák A., Pavlík Z. Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate. Materials. 2018;11:931. doi: 10.3390/ma11060931. PubMed DOI PMC

Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI

Záleská M., Pavlík Z., Pavlíková M., Scheinherrová L., Pokorný J., Trník A., Svora P., Fořt J., Jankovský O., Suchorab Z., et al. Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technol. Environ. Policy. 2018;20:159–171. doi: 10.1007/s10098-017-1465-3. DOI

Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116.

Walling S.A., Provis J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016;116:4170–4204. doi: 10.1021/acs.chemrev.5b00463. PubMed DOI

Dehua D., Chuanmei Z. The formation mechanism of the hydrate phases in magnesium oxychloride cement. Cem. Concr. Res. 1999;29:1365–1371. doi: 10.1016/S0008-8846(98)00247-6. DOI

Sorel S. On a New Magnesium Cement. Comptes Rendus Acad. Sci. 1867;65:102–104.

Demediuk T., Cole W.F., Hueber H.V. Studies on magnesium and calcium oxychlorides. Aust. J. Chem. 1955;8:215–233. doi: 10.1071/CH9550215. DOI

Chau C.K., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI

Dai W., Gong C., Lu L., Cheng X. Effect of MgO on calcination and properties of belite-barium calcium sulphoaluminate cement clinker with Na2O and K2O. Ceram. Silikáty. 2018;62:121–130. doi: 10.13168/cs.2018.0003. DOI

Stephan D., Dikoundou S.N., Raudaschl-Sieber G. Hydration characteristics and hydration products of tricalcium silicate doped with a combination of MgO, Al2O3 and Fe2O3. Thermochim. Acta. 2008;472:64–73. doi: 10.1016/j.tca.2008.03.013. DOI

De la Torre A.G., De Vera R.N., Cuberos A.J.M., Aranda M.A. Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis. Cem. Concr. Res. 2008;38:1261–1269. doi: 10.1016/j.cemconres.2008.06.005. DOI

Dinnebier R.E., Freyer D., Bette S., Oestreich M. 9Mg(OH)2·MgCl2·4H2O, a High Temperature Phase of the Magnesia Binder System. Inorg. Chem. 2010;49:9770–9779. doi: 10.1021/ic1004566. PubMed DOI

Dinnebier R.E., Oestreich M., Bette S., Freyer D. 2Mg(OH)2·MgCl2·2H2O and 2Mg(OH)2·MgCl2·4H2O, Two High Temperature Phases of the Magnesia Cement System. Z. Anorg. Allg. Chem. 2012;638:628–633. doi: 10.1002/zaac.201100497. DOI

Tooper B., Cartz L. Structure and Formation of Magnesium Oxychloride Sorel Cements. Nature. 1966;211:64–66. doi: 10.1038/211064a0. DOI

Matkovic B., Young J.F. Microstructure of Magnesium Oxychloride Cements. Nature Phys. Sci. 1973;246:79–80. doi: 10.1038/physci246079a0. DOI

Thompson H.C. Fireproof Product Using Magnesium Oxychloride Cement. No. 3,963,849. U.S. Patent. 1976 Jun 15;

Xu B., Ma H., Hu C., Li Z. Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Mater. Struct. 2016;49:1319–1326. doi: 10.1617/s11527-015-0578-6. DOI

Misra A.K., Mathur R. Magnesium oxychloride cement concrete. Bull. Mat. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI

Biel T.D., Lee H. Magnesium Oxychloride Cement Concrete with Recycled Tire Rubber. Transp. Res. Rec. 1996;1561:6–12. doi: 10.1177/0361198196156100102. DOI

Ma J., Zhao Y., Wang L., Wang J. Effect of Magnesium oxychloride Cement on Stabilization/Solidification of Sewage Sludge. Constr. Build. Mater. 2010;24:79–83.

Li G., Yu Y., Li J., Wang Y., Liu H. Experimental study on urban refuse/magnesium oxychloride cement compound floor tile. Cem. Concr. Res. 2003;33:1663–1668. doi: 10.1016/S0008-8846(03)00136-4. DOI

Karimi Y., Monshi A. Effect of magnesium chloride concentrations on the properties of magnesium oxychloride cement for nano SiC composite purposes. Ceram. Int. 2011;37:2405–2410. doi: 10.1016/j.ceramint.2011.05.082. DOI

Montle J.F., Mayhan K.G. The role of magnesium oxychloride as a fire-resistive material. Fire Technol. 1974;10:201–210. doi: 10.1007/BF02588845. DOI

Li Z., Chau C.K. Influence of molar ratios on properties of magnesium oxychloride cement. Cem. Concr. Res. 2007;37:866–870. doi: 10.1016/j.cemconres.2007.03.015. DOI

Zhou X., Li Z. Light-weight wood–magnesium oxychloride cement composite building products made by extrusion. Constr. Build. Mater. 2012;27:382–389. doi: 10.1016/j.conbuildmat.2011.07.033. DOI

Weng R., Liu N., Liu X.Y., Yang X.L. Study of water resistance of magnesium oxychloride cement reinforced by glass fiber. J. Korean Ceram. Soc. 1988;15:30–34.

Xia S., Xing P., Gao S. Studies on the basic compounds of magnesia cement: The thermal behaviour of magnesium oxychlorides. Thermochim. Acta. 1991;183:349–363. doi: 10.1016/0040-6031(91)80471-T. DOI

Xu B.W., Ma H.Y., Hu C.L., Yang S.Q., Li Z.J. Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites. Constr. Build. Mater. 2016;102:613–619. doi: 10.1016/j.conbuildmat.2015.10.205. DOI

Sglavo V.M., De Genua F., Conci A., Ceccato R., Cavallini R. Influence of curing temperature on the evolution of magnesium oxychloride cement. J. Mater. Sci. 2011;46:6726–6733. doi: 10.1007/s10853-011-5628-z. DOI

Liu Z., Balonis M., Huang J., Sha A., Sant G. The influence of composition and temperature on hydrated phase assemblages in magnesium oxychloride cements. J. Amer. Ceram. Soc. 2017;100:3246–3261. doi: 10.1111/jace.14817. DOI

Chen X., Zhang T., Bi W., Cheeseman C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI

Beaudoin J.J., Ramachandran V.S. Strength development in magnesium oxychloride and other cements. Cem. Concr. Res. 1975;5:617–630. doi: 10.1016/0008-8846(75)90062-9. DOI

Zhou Z., Chen H., Li Z., Li H. Simulation of the properties of MgO-MgfCl2-H2O system by thermodynamic method. Cem. Concr. Res. 2015;68:105–111. doi: 10.1016/j.cemconres.2014.11.006. DOI

He P., Poon C.S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI

Shi E., Ling Z., Wang A. MIR, NIR and Raman Spectra of magnesium chlorides with six hydration degrees–implication for Mars and Europe. J. Raman Spectrosc. 2019:1–14. doi: 10.1002/jrs.570014. DOI

Sugimoto K., Dinnebiera R.E., Hansonb J.C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2nH2O; n = 1, 2, 4) Acta Cryst. 2007;B63:235–242. doi: 10.1107/S0108768107002558. PubMed DOI

Dinnebier R.E., Halasz I., Freyer D. The crystal structures of two anhydrous magnesium hydroxychloride phases from in situ synchrotron powder diffraction data. Z. Anorg. Allg. Chem. 2011;637:1458–1462. doi: 10.1002/zaac.201100139. DOI

Cole W., Demediuk T. X-ray, thermal, and dehydration studies on magnesium oxychlorides. Aust. J. Chem. 1955;8:234–251. doi: 10.1071/CH9550234. DOI

Lojka M., Jiříčková A., Lauermannová A.-M., Pavlíková M., Pavlík M., Jankovský O. Kinetics of formation and thermal stability of Mg2(OH)3Cl·4H2O. AIP Conf. Proc. 2019;2170 doi: 10.1063/1.5132728. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...