Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2∙MgCl2∙8H2O
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-00262S
Grantová Agentura České Republiky
PubMed
32046098
PubMed Central
PMC7040710
DOI
10.3390/ma13030767
PII: ma13030767
Knihovny.cz E-resources
- Keywords
- MOC phases, kinetics of formation, magnesium oxychloride cement, non-hydraulic binder, thermal stability,
- Publication type
- Journal Article MeSH
In this paper, magnesium oxychloride cement with stoichiometry 3Mg(OH)2∙MgCl2∙8H2O (MOC 3-1-8) was prepared and characterized. The phase composition and kinetics of formation were studied by X-ray diffraction (XRD) and Rietveld analysis of obtained diffractograms. The chemical composition was analyzed using X-ray fluorescence (XRF) and energy dispersive spectroscopy (EDS). Furthermore, scanning electron microscopy (SEM) was used to study morphology, and Fourier Transform Infrared (FT-IR) spectroscopy was also used for the analysis of the prepared sample. In addition, thermal stability was tested using simultaneous thermal analysis (STA) combined with mass spectroscopy (MS). The obtained data gave evidence of the fast formation of MOC 3-1-8, which started to precipitate rapidly. As the length of the time of ripening increased, the amount of MgO decreased, while the amount of MOC 3-1-8 increased. The fast formation of the MOC 3-1-8 phase at an ambient temperature is important for its application in the production of low-energy construction materials, which corresponds with the challenges of a sustainable building industry.
See more in PubMed
Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015. DOI
Medina J.M., Sáez del Bosque I.F., Frías M., Sánchez de Rojas M.I., Medina C. Durability of new blended cements additioned with recycled biomass bottom ash from electric power plants. Constr. Build. Mater. 2019;225:429–440. doi: 10.1016/j.conbuildmat.2019.07.176. DOI
Bhagatg Singh G.V.P., Subramaniam K.V.L. Production and characterization of low-energy Portland composite cement from post-industrial waste. J. Clean. Prod. 2019;239 doi: 10.1016/j.jclepro.2019.118024. DOI
Souto-Martinez A., Arehart J.H., Srubar W.V. Cradle-to-gate CO2 emissions vs. in situ CO2 sequestration of structural concrete elements. Energy Build. 2018;167:301–311. doi: 10.1016/j.enbuild.2018.02.042. DOI
Boesch M.E., Koehler A., Hellweg S. Model for cradle-to-gate life cycle assessment of clinker production. Environ. Sci. Technol. 2009;43:7578–7583. doi: 10.1021/es900036e. PubMed DOI
Záleská M., Pavlíková M., Jankovský O., Lojka M., Pivák A., Pavlík Z. Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate. Materials. 2018;11:931. doi: 10.3390/ma11060931. PubMed DOI PMC
Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI
Záleská M., Pavlík Z., Pavlíková M., Scheinherrová L., Pokorný J., Trník A., Svora P., Fořt J., Jankovský O., Suchorab Z., et al. Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technol. Environ. Policy. 2018;20:159–171. doi: 10.1007/s10098-017-1465-3. DOI
Záleská M., Pavlíková M., Pavlík Z., Jankovský O., Pokorný J., Tydlitát V., Svora P., Černý R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018;160:106–116.
Walling S.A., Provis J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016;116:4170–4204. doi: 10.1021/acs.chemrev.5b00463. PubMed DOI
Dehua D., Chuanmei Z. The formation mechanism of the hydrate phases in magnesium oxychloride cement. Cem. Concr. Res. 1999;29:1365–1371. doi: 10.1016/S0008-8846(98)00247-6. DOI
Sorel S. On a New Magnesium Cement. Comptes Rendus Acad. Sci. 1867;65:102–104.
Demediuk T., Cole W.F., Hueber H.V. Studies on magnesium and calcium oxychlorides. Aust. J. Chem. 1955;8:215–233. doi: 10.1071/CH9550215. DOI
Chau C.K., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI
Dai W., Gong C., Lu L., Cheng X. Effect of MgO on calcination and properties of belite-barium calcium sulphoaluminate cement clinker with Na2O and K2O. Ceram. Silikáty. 2018;62:121–130. doi: 10.13168/cs.2018.0003. DOI
Stephan D., Dikoundou S.N., Raudaschl-Sieber G. Hydration characteristics and hydration products of tricalcium silicate doped with a combination of MgO, Al2O3 and Fe2O3. Thermochim. Acta. 2008;472:64–73. doi: 10.1016/j.tca.2008.03.013. DOI
De la Torre A.G., De Vera R.N., Cuberos A.J.M., Aranda M.A. Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis. Cem. Concr. Res. 2008;38:1261–1269. doi: 10.1016/j.cemconres.2008.06.005. DOI
Dinnebier R.E., Freyer D., Bette S., Oestreich M. 9Mg(OH)2·MgCl2·4H2O, a High Temperature Phase of the Magnesia Binder System. Inorg. Chem. 2010;49:9770–9779. doi: 10.1021/ic1004566. PubMed DOI
Dinnebier R.E., Oestreich M., Bette S., Freyer D. 2Mg(OH)2·MgCl2·2H2O and 2Mg(OH)2·MgCl2·4H2O, Two High Temperature Phases of the Magnesia Cement System. Z. Anorg. Allg. Chem. 2012;638:628–633. doi: 10.1002/zaac.201100497. DOI
Tooper B., Cartz L. Structure and Formation of Magnesium Oxychloride Sorel Cements. Nature. 1966;211:64–66. doi: 10.1038/211064a0. DOI
Matkovic B., Young J.F. Microstructure of Magnesium Oxychloride Cements. Nature Phys. Sci. 1973;246:79–80. doi: 10.1038/physci246079a0. DOI
Thompson H.C. Fireproof Product Using Magnesium Oxychloride Cement. No. 3,963,849. U.S. Patent. 1976 Jun 15;
Xu B., Ma H., Hu C., Li Z. Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Mater. Struct. 2016;49:1319–1326. doi: 10.1617/s11527-015-0578-6. DOI
Misra A.K., Mathur R. Magnesium oxychloride cement concrete. Bull. Mat. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI
Biel T.D., Lee H. Magnesium Oxychloride Cement Concrete with Recycled Tire Rubber. Transp. Res. Rec. 1996;1561:6–12. doi: 10.1177/0361198196156100102. DOI
Ma J., Zhao Y., Wang L., Wang J. Effect of Magnesium oxychloride Cement on Stabilization/Solidification of Sewage Sludge. Constr. Build. Mater. 2010;24:79–83.
Li G., Yu Y., Li J., Wang Y., Liu H. Experimental study on urban refuse/magnesium oxychloride cement compound floor tile. Cem. Concr. Res. 2003;33:1663–1668. doi: 10.1016/S0008-8846(03)00136-4. DOI
Karimi Y., Monshi A. Effect of magnesium chloride concentrations on the properties of magnesium oxychloride cement for nano SiC composite purposes. Ceram. Int. 2011;37:2405–2410. doi: 10.1016/j.ceramint.2011.05.082. DOI
Montle J.F., Mayhan K.G. The role of magnesium oxychloride as a fire-resistive material. Fire Technol. 1974;10:201–210. doi: 10.1007/BF02588845. DOI
Li Z., Chau C.K. Influence of molar ratios on properties of magnesium oxychloride cement. Cem. Concr. Res. 2007;37:866–870. doi: 10.1016/j.cemconres.2007.03.015. DOI
Zhou X., Li Z. Light-weight wood–magnesium oxychloride cement composite building products made by extrusion. Constr. Build. Mater. 2012;27:382–389. doi: 10.1016/j.conbuildmat.2011.07.033. DOI
Weng R., Liu N., Liu X.Y., Yang X.L. Study of water resistance of magnesium oxychloride cement reinforced by glass fiber. J. Korean Ceram. Soc. 1988;15:30–34.
Xia S., Xing P., Gao S. Studies on the basic compounds of magnesia cement: The thermal behaviour of magnesium oxychlorides. Thermochim. Acta. 1991;183:349–363. doi: 10.1016/0040-6031(91)80471-T. DOI
Xu B.W., Ma H.Y., Hu C.L., Yang S.Q., Li Z.J. Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites. Constr. Build. Mater. 2016;102:613–619. doi: 10.1016/j.conbuildmat.2015.10.205. DOI
Sglavo V.M., De Genua F., Conci A., Ceccato R., Cavallini R. Influence of curing temperature on the evolution of magnesium oxychloride cement. J. Mater. Sci. 2011;46:6726–6733. doi: 10.1007/s10853-011-5628-z. DOI
Liu Z., Balonis M., Huang J., Sha A., Sant G. The influence of composition and temperature on hydrated phase assemblages in magnesium oxychloride cements. J. Amer. Ceram. Soc. 2017;100:3246–3261. doi: 10.1111/jace.14817. DOI
Chen X., Zhang T., Bi W., Cheeseman C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI
Beaudoin J.J., Ramachandran V.S. Strength development in magnesium oxychloride and other cements. Cem. Concr. Res. 1975;5:617–630. doi: 10.1016/0008-8846(75)90062-9. DOI
Zhou Z., Chen H., Li Z., Li H. Simulation of the properties of MgO-MgfCl2-H2O system by thermodynamic method. Cem. Concr. Res. 2015;68:105–111. doi: 10.1016/j.cemconres.2014.11.006. DOI
He P., Poon C.S., Tsang D.C.W. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI
Shi E., Ling Z., Wang A. MIR, NIR and Raman Spectra of magnesium chlorides with six hydration degrees–implication for Mars and Europe. J. Raman Spectrosc. 2019:1–14. doi: 10.1002/jrs.570014. DOI
Sugimoto K., Dinnebiera R.E., Hansonb J.C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2nH2O; n = 1, 2, 4) Acta Cryst. 2007;B63:235–242. doi: 10.1107/S0108768107002558. PubMed DOI
Dinnebier R.E., Halasz I., Freyer D. The crystal structures of two anhydrous magnesium hydroxychloride phases from in situ synchrotron powder diffraction data. Z. Anorg. Allg. Chem. 2011;637:1458–1462. doi: 10.1002/zaac.201100139. DOI
Cole W., Demediuk T. X-ray, thermal, and dehydration studies on magnesium oxychlorides. Aust. J. Chem. 1955;8:234–251. doi: 10.1071/CH9550234. DOI
Lojka M., Jiříčková A., Lauermannová A.-M., Pavlíková M., Pavlík M., Jankovský O. Kinetics of formation and thermal stability of Mg2(OH)3Cl·4H2O. AIP Conf. Proc. 2019;2170 doi: 10.1063/1.5132728. DOI
MOC-Diatomite Composites Filled with Multi-Walled Carbon Nanotubes
Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly Ash
Magnesium Oxychloride Cement Composites with MWCNT for the Construction Applications
Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture