Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate

. 2018 May 31 ; 11 (6) : . [epub] 20180531

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29857530

Polypropylene (PP) is one of the most widely produced types of plastic worldwide, but its recycling is limited. This work presents a study of the utilization of expanded polypropylene (EPP) waste in a magnesium oxychloride cement (MOC) composite usable in the building industry. MOC is formed by mixing magnesium oxide powder and a concentrated solution of magnesium chloride and is characterized by excellent bonding ability to large quantities of different types of aggregates. A developed air-cured MOC composite, where an EPP-based aggregate was used for the full replacement of natural aggregate, was investigated in terms of its basic physical, mechanical, thermal and water resistance properties. The results demonstrate that incorporation of EPP waste greatly improved the thermal insulation properties, while the mechanical resistance was reduced to an acceptable level. The developed MOC composite containing EPP waste can be considered as an alternative thermal insulation material applicable for the construction of floor or envelope construction systems.

Zobrazit více v PubMed

Singh N., Hui D., Singh R., Ahuje I.P.S., Feo L., Fraternali F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017;115:409–422. doi: 10.1016/j.compositesb.2016.09.013. DOI

PlasticsEurope, Plastics–the Facts. [(accessed on 19 February 2018)];2017 Available online: www.plasticseurope.org.

Ragaert K., Delva L., Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. PubMed DOI

Ozbakkaloglu T., Gu L., Gholampour A. Short-Term Mechanical Properties of Concrete Containing Recycled Polypropylene Coarse Aggregates under Ambient and Elevated Temperature. J. Mater. Civ. Eng. 2017;29:1–10. doi: 10.1061/(ASCE)MT.1943-5533.0002046. DOI

D’Agostino D., Cuniberti B., Bertoldi P. Energy consumption and efficiency technology measures in European non-residential buildings. Energy Build. 2017;153:72–86. doi: 10.1016/j.enbuild.2017.07.062. DOI

Ma M., Lin W., Zhang J., Wang P., Zhou Y., Liang X. Towards energy-awareness smart building: Discover the fingerprint of your electrical appliances. IEEE Trans. Ind. Informat. 2018;14:1458–1468. doi: 10.1109/TII.2017.2776300. DOI

Ceranic B., Beardmore J., Cox A. Rapid deployment modular building solutions and climatic adaptability: Case based study of a novel approach to “thermal capacity on demand”. Energy Build. 2018;167:124–135. doi: 10.1016/j.enbuild.2018.01.044. DOI

De Rubeis T., Nardi I., Arnbrosini D., Paoletti D. Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate. Appl. Energy. 2018;218:131–145. doi: 10.1016/j.apenergy.2018.02.166. DOI

Záleská M., Pokorný J., Pavlíková M., Pavlík Z. Thermal Properties of Light-Weight Concrete with Waste Polypropylene Aggregate. AIP Conf. Proc. 2017;1866:040043. doi: 10.1063/1.4994523. DOI

Berardi U. A cross-country comparison of the building energy consumptions and their trends. Resour. Conserv. Recycl. 2017;123:230–241. doi: 10.1016/j.resconrec.2016.03.014. DOI

Suchorab Z., Barnat-Hunek D., Franus M., Łagod G. Mechanical and Physical Properties of Hydrophobized Lightweigh Aggregate Concrete with Sewage Sludge. Materials. 2016;9:317. doi: 10.3390/ma9050317. PubMed DOI PMC

Gu L., Ozbakkaloglu T. Use of recycled plastics in concrete: A critical review. Waste Manag. 2016;51:19–42. doi: 10.1016/j.wasman.2016.03.005. PubMed DOI

Sharma R., Bansal P.P. Use of different forms of waste plastic in concrete—A review. J. Clean. Prod. 2016;112:473–482. doi: 10.1016/j.jclepro.2015.08.042. DOI

Saikia N., de Brito J. Use of plastic waste as aggregate in cement mortar and concrete preparation: A review. Constr. Build. Mater. 2012;34:385–401. doi: 10.1016/j.conbuildmat.2012.02.066. DOI

Sorel S. On a new magnesium cement. CR Acad. Sci. 1867;65:102–104.

Tan Y., Liu Y., Grover L. Effect of phosphoric acid on the properties of magnesium oxychloride cement as biomaterial. Cem. Concr. Res. 2014;56:69–74. doi: 10.1016/j.cemconres.2013.11.001. DOI

Odler I. Special Inorganic Cements. CRC Press; London, UK: 2000.

Li Z., Chau C.K. Influence of molar ratios on properties of magnesium oxychloride cement. Cem. Concr. Res. 2007;37:866–870. doi: 10.1016/j.cemconres.2007.03.015. DOI

Sglavo V.M., De Genua F., Conci A., Ceccato R., Cavallini R. Influence of curing temperature on the evolution of magnesium oxychloride cement. J. Mater. Sci. 2011;46:6726–6733. doi: 10.1007/s10853-011-5628-z. DOI

Xu B., Ma H., Hu C., Yang S., Li Z. Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites. Constr. Build. Mater. 2016;102:613–619. doi: 10.1016/j.conbuildmat.2015.10.205. DOI

Xu B., Ma H., Hu C., Li Z. Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Mater. Struct. 2016;49:1319–1326. doi: 10.1617/s11527-015-0578-6. DOI

Chau C.K., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Conr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI

Montle J.F., Mayhan K.G. Magnesium oxychloride as a fire retardant material. Fire. Retard. Chem. Suppl. 1974;1:243–254.

Montle J.F., Mayhan K.G. The role of magnesium oxychloride as a fire-resistive material. Fire Tech. 1974;10:201–210. doi: 10.1007/BF02588845. DOI

Li J., Li G., Yu Y. The influence of compound additive on magnesium oxychloride cement/urban refuse floor tile. Constr. Build. Mater. 2008;22:521–525. doi: 10.1016/j.conbuildmat.2006.11.010. DOI

Li X.Y., Chen H.S., Chau C.K., Li Z.J. Extrusion of MOC-based panel. Key Eng. Mater. 2009;400–402:263–267. doi: 10.1016/j.msea.2009.07.064. DOI

Malinowski S., Jaroszyńska-Wolińska J. The physical and mechanical properties of magnesium oxychloride cement-based materials. Budownictwo i Architektura. 2015;14:89–98.

Yu L., Zhu Q., Yu J. Development and application of expanded polypropylene foam. J. Wuhan Univ. Technol., Mater. Sci. Ed. 2013;28:373–379. doi: 10.1007/s11595-013-0698-1. DOI

EN 196-1 . Methods of Testing Cement–Part 1: Determination of Strength. European Committee for Standardization; Brussels, Belgium: 2016.

EN 12350-5 . Testing Fresh Concrete–Part 5: Flow Table Test. European Committee for Standardization; Brussels, Belgium: 2009.

EN 12390-7 . Testing Hardened Concrete–Part 7: Density of Hardened Concrete. European Committee for Standardization; Brussels, Belgium: 2009.

EN 14016-2 . Binders for Magnesite Screeds–Caustic Magnesia and Magnesium Chloride–Part 2: Test Methods. European Committee for Standardization; Brussels, Belgium: 2005.

ČSN 73 1371 . Non-Destructive Testing of Concrete-Method of Ultrasonic Pulse Testing of Concrete. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2011.

Komloš K., Popovics S., Nürnbergerová T., Babál B., Popovics J.S. Ultrasonic pulse velocity test of concrete properties as specified in various standards. Cem. Concr. Compos. 1996;18:357–364. doi: 10.1016/0958-9465(96)00026-1. DOI

EN ISO 12571 . Hygrothermal Performance of Building Materials and Products-Determination of Hygroscopic Sorption Properties. European Committee for Standardization; Brussels, Belgium: 2013.

EN ISO 12570 . Hygrothermal Performance of Building Materials and Products-Determination of Moisture Content by Drying at Elevated Temperature. European Committee for Standardization; Brussels, Belgium: 2000.

Babu K.G., Babu D.S. Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cem. Concr. Res. 2003;33:755–762. doi: 10.1016/S0008-8846(02)01055-4. DOI

Saika N., De Brito J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 2014;52:236–244. doi: 10.1016/j.conbuildmat.2013.11.049. DOI

EN 206-1 . Concrete-Part 1: Specification, Performance, Production and Conformity. European Committee for Standardization; Brussels, Belgium: 2014.

Safi B., Saidi M., Aboutaleb D., Maallem M. The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Constr. Build. Mater. 2013;43:436–442. doi: 10.1016/j.conbuildmat.2013.02.049. DOI

Misra A.K., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI

Shehab H.K., Eisa A.S., Wahba A.M. Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr. Build. Mater. 2016;126:560–565. doi: 10.1016/j.conbuildmat.2016.09.059. DOI

Martina Z., Milena P., Ondřej J., Jaroslav P., Zbyšek P. Lightweight concrete made with waste expanded polypropylene-based aggregate and synthetic coagulated amorphous silica. Ceramics-Silikáty. 2018;62:221–232. doi: 10.13168/cs.2018.0015. DOI

Yang S., Yue X., Liu X., Tong Y. Properties of self-compacting lightweight concrete containing recycled plastic particles. Constr. Build. Mater. 2015;84:444–453. doi: 10.1016/j.conbuildmat.2015.03.038. DOI

Tang W., Cui H., Tahmasbi S. Fracture Properties of Polystyrene Aggregate Concrete after Exposure to High Temperatures. Materials. 2016;9:630. doi: 10.3390/ma9080630. PubMed DOI PMC

Ruiz-Herrero J.L., Nieto D.V., López-Gil A., Arranz A., Fernández A., Lorenzana A., Merino S., De Saja J.A., Rodríguez-Pérez M.A. Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Constr. Build. Mater. 2016;104:293–310. doi: 10.1016/j.conbuildmat.2015.12.005. DOI

Alqahtani F.K., Ghataoram G., Khan M.I., Dirar S. Novel lightweight concrete containing manufactured plastic aggregate. Constr. Build. Mater. 2017;148:386–397. doi: 10.1016/j.conbuildmat.2017.05.011. DOI

Brooks A.L., Zhou H., Hanna D. Comparative study of the mechanical and thermal properties of lightweight cementitious composites. Constr. Build. Mater. 2018;159:316–328. doi: 10.1016/j.conbuildmat.2017.10.102. DOI

Wang R., Meyer C. Performance of cement mortar made with recycled high impact polystyrene. Cem. Concr. Compos. 2012;34:975–981. doi: 10.1016/j.cemconcomp.2012.06.014. DOI

Zhang C., Deng D. Research on the water-resistance of magnesium oxychloride cement I: the stability of the reaction products of magnesium oxychloride cement in water. J. Wuhan Univ. Technol. Mater. Sci. Ed. 1994;9:51–59.

Wu C., Yu H., Zhang H., Dong J., Wen J., Tan Y. Effects of phosphoric acid and phosphates on magnesium oxysulfate cement. Mater. Struct. 2015;48:907–917. doi: 10.1617/s11527-013-0202-6. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...