Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29857530
PubMed Central
PMC6025128
DOI
10.3390/ma11060931
PII: ma11060931
Knihovny.cz E-zdroje
- Klíčová slova
- magnesium oxychloride cement, mechanical parameters, thermal insulation, ultra-lightweight aggregate, waste expanded polypropylene, water resistance,
- Publikační typ
- časopisecké články MeSH
Polypropylene (PP) is one of the most widely produced types of plastic worldwide, but its recycling is limited. This work presents a study of the utilization of expanded polypropylene (EPP) waste in a magnesium oxychloride cement (MOC) composite usable in the building industry. MOC is formed by mixing magnesium oxide powder and a concentrated solution of magnesium chloride and is characterized by excellent bonding ability to large quantities of different types of aggregates. A developed air-cured MOC composite, where an EPP-based aggregate was used for the full replacement of natural aggregate, was investigated in terms of its basic physical, mechanical, thermal and water resistance properties. The results demonstrate that incorporation of EPP waste greatly improved the thermal insulation properties, while the mechanical resistance was reduced to an acceptable level. The developed MOC composite containing EPP waste can be considered as an alternative thermal insulation material applicable for the construction of floor or envelope construction systems.
Zobrazit více v PubMed
Singh N., Hui D., Singh R., Ahuje I.P.S., Feo L., Fraternali F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017;115:409–422. doi: 10.1016/j.compositesb.2016.09.013. DOI
PlasticsEurope, Plastics–the Facts. [(accessed on 19 February 2018)];2017 Available online: www.plasticseurope.org.
Ragaert K., Delva L., Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. PubMed DOI
Ozbakkaloglu T., Gu L., Gholampour A. Short-Term Mechanical Properties of Concrete Containing Recycled Polypropylene Coarse Aggregates under Ambient and Elevated Temperature. J. Mater. Civ. Eng. 2017;29:1–10. doi: 10.1061/(ASCE)MT.1943-5533.0002046. DOI
D’Agostino D., Cuniberti B., Bertoldi P. Energy consumption and efficiency technology measures in European non-residential buildings. Energy Build. 2017;153:72–86. doi: 10.1016/j.enbuild.2017.07.062. DOI
Ma M., Lin W., Zhang J., Wang P., Zhou Y., Liang X. Towards energy-awareness smart building: Discover the fingerprint of your electrical appliances. IEEE Trans. Ind. Informat. 2018;14:1458–1468. doi: 10.1109/TII.2017.2776300. DOI
Ceranic B., Beardmore J., Cox A. Rapid deployment modular building solutions and climatic adaptability: Case based study of a novel approach to “thermal capacity on demand”. Energy Build. 2018;167:124–135. doi: 10.1016/j.enbuild.2018.01.044. DOI
De Rubeis T., Nardi I., Arnbrosini D., Paoletti D. Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate. Appl. Energy. 2018;218:131–145. doi: 10.1016/j.apenergy.2018.02.166. DOI
Záleská M., Pokorný J., Pavlíková M., Pavlík Z. Thermal Properties of Light-Weight Concrete with Waste Polypropylene Aggregate. AIP Conf. Proc. 2017;1866:040043. doi: 10.1063/1.4994523. DOI
Berardi U. A cross-country comparison of the building energy consumptions and their trends. Resour. Conserv. Recycl. 2017;123:230–241. doi: 10.1016/j.resconrec.2016.03.014. DOI
Suchorab Z., Barnat-Hunek D., Franus M., Łagod G. Mechanical and Physical Properties of Hydrophobized Lightweigh Aggregate Concrete with Sewage Sludge. Materials. 2016;9:317. doi: 10.3390/ma9050317. PubMed DOI PMC
Gu L., Ozbakkaloglu T. Use of recycled plastics in concrete: A critical review. Waste Manag. 2016;51:19–42. doi: 10.1016/j.wasman.2016.03.005. PubMed DOI
Sharma R., Bansal P.P. Use of different forms of waste plastic in concrete—A review. J. Clean. Prod. 2016;112:473–482. doi: 10.1016/j.jclepro.2015.08.042. DOI
Saikia N., de Brito J. Use of plastic waste as aggregate in cement mortar and concrete preparation: A review. Constr. Build. Mater. 2012;34:385–401. doi: 10.1016/j.conbuildmat.2012.02.066. DOI
Sorel S. On a new magnesium cement. CR Acad. Sci. 1867;65:102–104.
Tan Y., Liu Y., Grover L. Effect of phosphoric acid on the properties of magnesium oxychloride cement as biomaterial. Cem. Concr. Res. 2014;56:69–74. doi: 10.1016/j.cemconres.2013.11.001. DOI
Odler I. Special Inorganic Cements. CRC Press; London, UK: 2000.
Li Z., Chau C.K. Influence of molar ratios on properties of magnesium oxychloride cement. Cem. Concr. Res. 2007;37:866–870. doi: 10.1016/j.cemconres.2007.03.015. DOI
Sglavo V.M., De Genua F., Conci A., Ceccato R., Cavallini R. Influence of curing temperature on the evolution of magnesium oxychloride cement. J. Mater. Sci. 2011;46:6726–6733. doi: 10.1007/s10853-011-5628-z. DOI
Xu B., Ma H., Hu C., Yang S., Li Z. Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites. Constr. Build. Mater. 2016;102:613–619. doi: 10.1016/j.conbuildmat.2015.10.205. DOI
Xu B., Ma H., Hu C., Li Z. Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Mater. Struct. 2016;49:1319–1326. doi: 10.1617/s11527-015-0578-6. DOI
Chau C.K., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Conr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI
Montle J.F., Mayhan K.G. Magnesium oxychloride as a fire retardant material. Fire. Retard. Chem. Suppl. 1974;1:243–254.
Montle J.F., Mayhan K.G. The role of magnesium oxychloride as a fire-resistive material. Fire Tech. 1974;10:201–210. doi: 10.1007/BF02588845. DOI
Li J., Li G., Yu Y. The influence of compound additive on magnesium oxychloride cement/urban refuse floor tile. Constr. Build. Mater. 2008;22:521–525. doi: 10.1016/j.conbuildmat.2006.11.010. DOI
Li X.Y., Chen H.S., Chau C.K., Li Z.J. Extrusion of MOC-based panel. Key Eng. Mater. 2009;400–402:263–267. doi: 10.1016/j.msea.2009.07.064. DOI
Malinowski S., Jaroszyńska-Wolińska J. The physical and mechanical properties of magnesium oxychloride cement-based materials. Budownictwo i Architektura. 2015;14:89–98.
Yu L., Zhu Q., Yu J. Development and application of expanded polypropylene foam. J. Wuhan Univ. Technol., Mater. Sci. Ed. 2013;28:373–379. doi: 10.1007/s11595-013-0698-1. DOI
EN 196-1 . Methods of Testing Cement–Part 1: Determination of Strength. European Committee for Standardization; Brussels, Belgium: 2016.
EN 12350-5 . Testing Fresh Concrete–Part 5: Flow Table Test. European Committee for Standardization; Brussels, Belgium: 2009.
EN 12390-7 . Testing Hardened Concrete–Part 7: Density of Hardened Concrete. European Committee for Standardization; Brussels, Belgium: 2009.
EN 14016-2 . Binders for Magnesite Screeds–Caustic Magnesia and Magnesium Chloride–Part 2: Test Methods. European Committee for Standardization; Brussels, Belgium: 2005.
ČSN 73 1371 . Non-Destructive Testing of Concrete-Method of Ultrasonic Pulse Testing of Concrete. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2011.
Komloš K., Popovics S., Nürnbergerová T., Babál B., Popovics J.S. Ultrasonic pulse velocity test of concrete properties as specified in various standards. Cem. Concr. Compos. 1996;18:357–364. doi: 10.1016/0958-9465(96)00026-1. DOI
EN ISO 12571 . Hygrothermal Performance of Building Materials and Products-Determination of Hygroscopic Sorption Properties. European Committee for Standardization; Brussels, Belgium: 2013.
EN ISO 12570 . Hygrothermal Performance of Building Materials and Products-Determination of Moisture Content by Drying at Elevated Temperature. European Committee for Standardization; Brussels, Belgium: 2000.
Babu K.G., Babu D.S. Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cem. Concr. Res. 2003;33:755–762. doi: 10.1016/S0008-8846(02)01055-4. DOI
Saika N., De Brito J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 2014;52:236–244. doi: 10.1016/j.conbuildmat.2013.11.049. DOI
EN 206-1 . Concrete-Part 1: Specification, Performance, Production and Conformity. European Committee for Standardization; Brussels, Belgium: 2014.
Safi B., Saidi M., Aboutaleb D., Maallem M. The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Constr. Build. Mater. 2013;43:436–442. doi: 10.1016/j.conbuildmat.2013.02.049. DOI
Misra A.K., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI
Shehab H.K., Eisa A.S., Wahba A.M. Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr. Build. Mater. 2016;126:560–565. doi: 10.1016/j.conbuildmat.2016.09.059. DOI
Martina Z., Milena P., Ondřej J., Jaroslav P., Zbyšek P. Lightweight concrete made with waste expanded polypropylene-based aggregate and synthetic coagulated amorphous silica. Ceramics-Silikáty. 2018;62:221–232. doi: 10.13168/cs.2018.0015. DOI
Yang S., Yue X., Liu X., Tong Y. Properties of self-compacting lightweight concrete containing recycled plastic particles. Constr. Build. Mater. 2015;84:444–453. doi: 10.1016/j.conbuildmat.2015.03.038. DOI
Tang W., Cui H., Tahmasbi S. Fracture Properties of Polystyrene Aggregate Concrete after Exposure to High Temperatures. Materials. 2016;9:630. doi: 10.3390/ma9080630. PubMed DOI PMC
Ruiz-Herrero J.L., Nieto D.V., López-Gil A., Arranz A., Fernández A., Lorenzana A., Merino S., De Saja J.A., Rodríguez-Pérez M.A. Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Constr. Build. Mater. 2016;104:293–310. doi: 10.1016/j.conbuildmat.2015.12.005. DOI
Alqahtani F.K., Ghataoram G., Khan M.I., Dirar S. Novel lightweight concrete containing manufactured plastic aggregate. Constr. Build. Mater. 2017;148:386–397. doi: 10.1016/j.conbuildmat.2017.05.011. DOI
Brooks A.L., Zhou H., Hanna D. Comparative study of the mechanical and thermal properties of lightweight cementitious composites. Constr. Build. Mater. 2018;159:316–328. doi: 10.1016/j.conbuildmat.2017.10.102. DOI
Wang R., Meyer C. Performance of cement mortar made with recycled high impact polystyrene. Cem. Concr. Compos. 2012;34:975–981. doi: 10.1016/j.cemconcomp.2012.06.014. DOI
Zhang C., Deng D. Research on the water-resistance of magnesium oxychloride cement I: the stability of the reaction products of magnesium oxychloride cement in water. J. Wuhan Univ. Technol. Mater. Sci. Ed. 1994;9:51–59.
Wu C., Yu H., Zhang H., Dong J., Wen J., Tan Y. Effects of phosphoric acid and phosphates on magnesium oxysulfate cement. Mater. Struct. 2015;48:907–917. doi: 10.1617/s11527-013-0202-6. DOI
Magnesium Oxychloride Cement Composites Lightened with Granulated Scrap Tires and Expanded Glass
Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture
Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2∙MgCl2∙8H2O