Magnesium Oxychloride Cement Composites Lightened with Granulated Scrap Tires and Expanded Glass
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-00262S
Grantová Agentura České Republiky
PubMed
33126738
PubMed Central
PMC7662570
DOI
10.3390/ma13214828
PII: ma13214828
Knihovny.cz E-resources
- Keywords
- granulated expanded glass, macrostructural parameters, magnesium oxychloride cement, mechanical resistance, scrap tires, thermal performance, water resistance,
- Publication type
- Journal Article MeSH
In this paper, light burned magnesia dispersed in the magnesium chloride solution was used for the manufacturing of magnesium oxychloride cement-based composites which were lightened by granulated scrap tires and expanded glass. In a reference composite, silica sand was used only as filler. In the lightened materials, granulated shredded tires were used as 100%, 90%, 80%, and 70% silica sand volumetric replacement. The rest was compensated by the addition of expanded glass granules. The filling materials were characterized by particle size distribution, specific density, dry powder density, and thermal properties that were analyzed for both loose and compacted aggregates. For the hardened air-cured samples, macrostructural parameters, mechanical properties, and hygric and thermal parameters were investigated. Specific attention was paid to the penetration of water and water-damage, which were considered as crucial durability parameters. Therefore, the compressive strength of samples retained after immersion for 24 h in water was tested and the water resistance coefficient was assessed. The use of processed waste rubber and expanded glass granulate enabled the development of lightweight materials with sufficient mechanical strength and stiffness, low permeability for water, enhanced thermal insulation properties, and durability in contact with water. These properties make the produced composites an interesting alternative to Portland cement-based materials. Moreover, the use of low-carbon binder and waste tires can be considered as an eco-efficient added value of these products which could improve the environmental impact of the construction industry.
See more in PubMed
Eriksson O., Bisaillon M., Haraldsson M., Sundberg J. Integrated waste management as a mean to promote renewable energy. Renew. Energy. 2017;61:38–42.
Byström J. Eco efficiency, a path towards integrated resource management. Waste Manag. 2012;32:797–798. PubMed
ETRMA—European Tyre & Rubber Manufactures’ Association European Tyre and Rubber Industry Statistics. [(accessed on 15 September 2020)];2019 Available online: https://www.etrma.org/wp-content/uploads/2019/10/20191114-Statistics-booklet-2019-Final-for-web.pdf.
Sienkiewicz M., Kucinska-Lipka J., Janik H., Balas A. Progress in used tyres management in the European Union: A review. Waste Manag. 2012;32:1742–1751. doi: 10.1016/j.wasman.2012.05.010. PubMed DOI
Toretta V., Rada E.C., Ragazzi M., Trulli E., Istrate I.A., Cioca L.I. Treatment and disposal of tyres: Two EU approaches. A review. Waste Manag. 2015;45:152–160. doi: 10.1016/j.wasman.2015.04.018. PubMed DOI
Noorzad R., Raveshi M. Mechanical behavior of waste tire crumbs-sand mixtures determined by triaxial tests. Geotech. Geol. Eng. 2017;35:1793–1802.
Pantea D., Darmstadt H., Kaliaguine S., Roy C. Heat-treatment of carbon blacks obtained by pyrolysis of used tires. Effect on the surface chemistry, porosity and electrical conductivity. J. Anal. Pyrol. 2003;67:55–76. doi: 10.1016/S0165-2370(02)00017-7. DOI
Moreno-Navarro F., Sol-Sánchez M., Rubio-Gámez M.C. Reuse of deconstructed tires as anti-reflective cracking mat systems in asphalt pavements. Constr. Build. Mater. 2014;53:182–189. doi: 10.1016/j.conbuildmat.2013.11.101. DOI
Xiao F., Amirkhanian S.N. Laboratory investigation of moisture damage in rubberised asphalt mixtures containing reclaimed asphalt pavement. Int. J. Pavement Eng. 2009;10:319–328.
Yu X., Wang Y., Luo Y. Effects of types and content of warm-mix additives on CRMA. J. Mater. Civ. Eng. 2013;25:939–945.
Shu X., Huang B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014;67:217–224.
Akisetty C., Xiao F., Gandhi T., Amirkhanian S. Estimating correlations between rheological and engineering properties of rubberized asphalt concrete mixtures containing warm mix asphalt additive. Constr. Build. Mater. 2011;25:950–956. doi: 10.1016/j.conbuildmat.2010.06.087. DOI
Lo Presti D., Airey G. Tyre rubber-modified bitumens development: The effect of varying processing conditions. Road Mater. Pavement. 2013;14:888–900. doi: 10.1080/14680629.2013.837837. DOI
Gupta T., Chaudhary S., Sharma R.K. Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Constr. Build. Mater. 2014;73:562–574. doi: 10.1016/j.conbuildmat.2014.09.102. DOI
Siddique R., Naik T.R. Properties of concrete containing scrap-tire rubber—An overview. Waste Manag. 2004;24:563–569. doi: 10.1016/j.wasman.2004.01.006. PubMed DOI
Liu H., Wang X., Jiao Y., Sha T. Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials. 2019;9:172. doi: 10.3390/ma9030172. PubMed DOI PMC
Boudaoud Z., Beddar M. Effects of recycled tires rubber aggregates on the characteristics of cement concrete. Open J. Civ. Eng. 2012;2:193–197. doi: 10.4236/ojce.2012.24025. DOI
Záleská M., Pavlík Z., Čítek D., Jankovský O., Pavlíková M. Ecco-friendly concrete with scrap-tyre-rubber-based aggregate – Properties and thermal stability. Constr. Build. Mater. 2019;225:709–722. doi: 10.1016/j.conbuildmat.2019.07.168. DOI
Lavagna L., Nisticò R., Sarasso M., Pavese M. An analytical mini-review on the compression strength of rubberized concrete as a function of the amount of recycled tires crumb rubber. Materials. 2020;13:1234. doi: 10.3390/ma13051234. PubMed DOI PMC
Mohammed B.S., Hossain K.M.A., Swee J.T.E., Wong G., Abdullahi M. Properties of crumb rubber hollow concrete block. J. Clean. Prod. 2012;23:57–67. doi: 10.1016/j.jclepro.2011.10.035. DOI
Sukontasukkul P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Constr. Build. Mater. 2008;23:1084–1092. doi: 10.1016/j.conbuildmat.2008.05.021. DOI
de Souza Kazmiercziak C., Schneider S.D., Aguilera O., Albert C.C., Mancio M. Rendering mortars with crumb rubber: Mechanical strength, thermal and fire properties and durability behavior. Constr. Build. Mater. 2020;253:119002. doi: 10.1016/j.conbuildmat.2020.119002. DOI
Oikonomou N., Mavridou S. Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires. Cem. Concr. Compos. 2009;31:403–407. doi: 10.1016/j.cemconcomp.2009.04.004. DOI
Benazzouk A., Douzane O., Langlet T., Mezreb K., Roucoult J.M., Quéneudec M. Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes. Cem. Concr. Compos. 2007;29:732–740. doi: 10.1016/j.cemconcomp.2007.07.001. DOI
Xu H., Lian J., Gao M., Fu D., Yan Y. Self-Healing Concrete Using Rubber Particles to Immobilize Bacterial Spores. Materials. 2019;12:2313. doi: 10.3390/ma12142313. PubMed DOI PMC
Segre N., Joekes I., Galves A.D., Rodrigues J.A. Rubber-mortar composite: Effect of composition on properties. J. Mater. Sci. 2004;39:3319–3327. doi: 10.1023/B:JMSC.0000026932.06653.de. DOI
Záleská M., Pavlíková M., Jankovský O., Lojka M., Pivák A., Pavlík Z. Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate. Materials. 2018;11:931. doi: 10.3390/ma11060931. PubMed DOI PMC
Li Y., Yu H., Zheng L., Wen J., Wu C., Tan Y. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Constr. Build. Mater. 2013;38:1–7. doi: 10.1016/j.conbuildmat.2012.06.016. DOI
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Sedmidubský D. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI
Qing H., Ying L., Jing W., Weixin Z., Chenggong C., Jinmei D., Danchun A., Xueying X., Yuan Z. Effect of ethyl silicate on the water resistance of magnesium oxychloride cement. Ceram. Silikáty. 2020;64:75–83. doi: 10.13168/cs.2019.0051. DOI
Deng D. The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement. Cem. Concr. Res. 2008;33:1311–1317. doi: 10.1016/S0008-8846(03)00043-7. DOI
Bockstal L., Berchem T., Schmetz Q., Richel A. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review. J. Clean. Prod. 2019;236:117574.
Záleská M., Pavlíková M., Pokorný J., Jankovský O., Pavlík Z., Černý R. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018;180:1–11.
Testing for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution, EN 933-1. European Committee for Standardization; Brussels, Belgium: 2012.
Binders for Magnesite Screeds—Caustic Magnesia and Magnesium Chloride—Part 2: Test Methods, EN 14016-2. European Committee for Standardization; Brussels, Belgium: 2004.
Pivák A., Pavlíková M., Záleská M., Lojka M., Jankovský O., Pavlík Z. Magnesium oxychloride cement composites with silica filler and coal fly ash admixture. Materials. 2020;13:2537. PubMed PMC
Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar, EN 1015-10. European Committee for Standardization; Brussels, Belgium: 1999.
Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar, EN 1015-11. European Committee for Standardization; Brussels, Belgium: 1999.
Malhotra V.M., Carino N.J. Handbook on Nondestructive Testing of Concrete. 2nd ed. CRC Press LLC; Boca Raton, FL, USA: 2003.
He P., Poon C.S., Tsang D.C.W. Effect of pulverized fuel ash and CO2 curing on the water resistance of magnesium oxychloride cement (MOC) Cem. Concr. Res. 2017;97:115–122.
Tang S., Hu Y., Ren W., Yu P., Huang Q., Qi X., Li Y., Chen E. Modeling on the hydration and leaching of eco-friendly magnesium oxychloride cement paste at the micro-scale. Constr. Build. Mater. 2019;204:684–690.
Zhou J., Liu P., Wu C., Du Z., Zong J., Miao M., Pang R., Yu H. Properties of foam concrete prepared from magnesium oxychloride cement. Ceram. Silikáty. 2020;64:200–214.
Natural Stone Test Methods—Determination of Water Absorption at Atmospheric Pressure, EN 13755. European Committee for Standardization; Brussels, Belgium: 2008.
Pavlík Z., Černý R. Determination of moisture diffusivity as a function of both moisture and temperature. Int. J. Thermophys. 2012;33:1704–1714.
Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242.
Methods of Test for Mortar for Masonry—Part 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar, EN 1015-18. European Committee for Standardization; Brussels, Belgium: 2002.
Feng C., Janssen H. Hygric properties of porous building materials (III): Impact factors and data processing methods of the capillary absorption test. Build. Environ. 2018;134:21–34.
Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envel. Build. Sci. 1999;22:349–355.
Gustafsson S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 1991;62:797. doi: 10.1063/1.1142087. DOI
Sizov A.D., Cederkrantz D., Salmi L., Rosén A., Jacobson L.S., Gustafsson S.E., Gustavsson M. Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique. Rev. Sci. Instrum. 2016;87:074901. doi: 10.1063/1.4954972. PubMed DOI
Xu B., Ma H., Hu C., Li Z. Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Mater. Struct. 2016;49:1319–1326.
Chandra S., Berntsson L. Lightweight Aggregate Concrete, Science, Technology, and Applications. Noyes Publications/Wiliam Andrew Publishing; Norwich, CT, USA: 2002.
Pivák A., Pavlíková M., Záleská M., Lojka M., Lauermannová A.-M., Jankovský O., Pavlík Z. Low-carbon composite based on MOC, silica sand and ground porcelain insulator waste. Processes. 2020;8:829. doi: 10.3390/pr8070829. DOI
Concrete—Specification, Performance, Production and Conformit, EN 206+A1. European Committee for Standardization; Brussels, Belgium: 2016.
Thienel K.-C., Haller T., Beuntner N. Lightweight concrete—From basics to innovations. Materials. 2020;13:1120. doi: 10.3390/ma13051120. PubMed DOI PMC
Guo Y., Zhang Y., Soe K., Hutchinson W.D., Timmers H., Poblete M.R. Effect of fly ash on mechanical properties of magnesium cement under water attack. Struct. Concr. 2020;21:1181–1199. doi: 10.1002/suco.201900329. DOI
Hall D.A., Stevens R., El-Jazairi B. The effect of retarders on the microstructure and mechanical properties of magnesia–phosphate cement mortar. Cem. Concr. Res. 2001;31:455–465.
Misra A.K., Mathur R. Magnesium oxychloride cement concrete. Bull. Mat. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI
Eurocode 2: Design of Concrete Structures. Part 1-1, General Rules and Rules for Buildings, EN 1992-1-1. European Committee for Standardization; Brussels, Belgium: 2019.
Guo Y., Zhang Y., Soe K., Pulham M. Recent development in magnesium oxychloride cement. Struct. Concr. 2018;19:1290–1300. doi: 10.1002/suco.201800077. DOI
Záleská M., Pavlíková M., Jankovský O., Lojka M., Antončík F., Pivák A., Pavlík Z. Influence of waste plastic aggregate and water-repellent additive on the properties of lightweight magnesium oxychloride cement composite. Appl. Sci. 2019;9:5463. doi: 10.3390/app9245463. DOI
Yu K., Guo Y., Zhang Y.X., Soe K. Magnesium oxychloride cement-based strain-hardening cementitious composite: Mechanical property and water resistance. Constr. Build. Mater. 2020;261:119970. doi: 10.1016/j.conbuildmat.2020.119970. DOI
Tan Y., Liu Y., Grover L. Effect of phosphoric acid on the properties of magnesium oxychloride cement as biomaterial. Cem. Concr. Res. 2014;56:69–74. doi: 10.1016/j.cemconres.2013.11.001. DOI
Li Y., Yu H. Rapid assessment method for water resistance of magnesium oxychloride cement based on measurement of high temperature erosion thickness. J. Chin. Ceram. Soc. 2014;42:1047–1054.
Magnesium Potassium Phosphate Cement-Based Derivatives for Construction Use: Experimental Assessment
Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly Ash