Magnesium Potassium Phosphate Cement-Based Derivatives for Construction Use: Experimental Assessment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00262S
Czech Science Foundation
SGS20/153/OHK1/3T/11
Grant Agency of the Czech Technical University in Prague
PubMed
35269126
PubMed Central
PMC8911925
DOI
10.3390/ma15051896
PII: ma15051896
Knihovny.cz E-zdroje
- Klíčová slova
- lightweight aggregate, magnesium potassium phosphate cement, mechanical and physical parameters, rheology, setting retarder,
- Publikační typ
- časopisecké články MeSH
The presented research is focused on the development and testing of the magnesium potassium phosphate cement-based materials (MKPC-based). Firstly, the fresh state properties of the pastes consisting of dead burned magnesia powder, potassium dihydrogen phosphate, setting retarder borax applied in the range of 0-10 wt.%, and batch water were investigated. The aim of testing was to characterize the hydration process in dependence on the borax content. The properties of raw MgO powder were described by chemical composition and particle size distribution. The properties tested in fresh state included shear stress (viscosity), Young's modulus of elasticity, and temperature; their time dependence was observed. The measurements started immediately after the mixing process. At the age of 14 days, basic structural and mechanical properties of the hardened pastes were obtained. The mixture with 5 wt.% of borax proved to be the most advantageous in terms of setting time, sample integrity, and mechanical strength; therefore, it was chosen as the binder for the following part of the study-MKPC-based mortar development. In the next step, the MKPC paste containing 5 wt.% of borax was supplemented by silica sand aggregate, and the resulting material was marked as a reference. Subsequently, three other mixtures were derived by replacing 100% of quartz sand by lightweight aggregate; namely by expanded glass aggregate, waste rubber from tires, and combination of both in ratio 1:1. The aggregates were characterized by chemical composition (except for the rubber granulate), and loose and compacted powder density. For the resulting hardened composites, basic structural, hygric, strength, and thermal parameters were investigated. The use of lightweight aggregates brought in a considerable decrease in heat transport parameters and low water permeability while maintaining sufficient strength. The favorable obtained material properties are underscored by the fact that magnesia-phosphate is considered to be a low-carbon binder. The combination of magnesia-phosphate binder and recycled aggregate provides a satisfying, environmentally friendly, and thermally efficient alternative to traditional Portland cement-based materials.
Zobrazit více v PubMed
Zhang C.Y., Yu B., Chen J.M., Wei Y.M. Green transition pathways for cement industry in China. Resour. Conserv. Recycl. 2021;166:105355. doi: 10.1016/j.resconrec.2020.105355. DOI
Technology Roadmap: Low-Carbon Transition in the Cement Industry. [(accessed on 8 November 2021)]. Available online: https://iea.blob.core.windows.net/assets/cbaa3da1-fd61-4c2a-8719-31538f59b54f/TechnologyRoadmapLowCarbonTransitionintheCementIndustry.pdf.
Paris Agreement. [(accessed on 8 November 2021)]. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf.
Climate Transparency Report 2021: Comparing G20 Climate Action towards Net Zero. [(accessed on 10 November 2021)]. Available online: https://www.climate-transparency.org/wp-content/uploads/2021/10/CT2021-Highlights-Report.pdf.
Climate Action Tracker: Paris Agreement Compatible Sectoral Benchmarks 2020. [(accessed on 12 November 2021)]. Available online: https://climateactiontracker.org/documents/753/CAT_2020-07-10_ParisAgreementBenchmarks_FullReport.pdf.
UN Environment. Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015. DOI
Zhou S., Ma C., Long G., Xie Y. A novel non-Portland cementitious material: Mechanical properties, durability and characterization. Constr. Build. Mater. 2020;238:117671. doi: 10.1016/j.conbuildmat.2019.117671. DOI
Nguyen M.H., Nguyen V.T., Huynh T.P., Hwang C.L. Incorporating industrial by-products into cement-free binders: Effects on water absorption, porosity, and chloride penetration. Constr. Build. Mater. 2021;304:124675. doi: 10.1016/j.conbuildmat.2021.124675. DOI
Pivák A., Pavlíková M., Záleská M., Lojka M., Lauermannová A.-M., Jankovský O., Pavlík Z. Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Waste. Processes. 2020;8:829. doi: 10.3390/pr8070829. DOI
Scrivener K., Martirena F., Bishnoi S., Maity S. Calcined clay limestone cements (LC3) Cem. Concr. Res. 2018;114:49–56. doi: 10.1016/j.cemconres.2017.08.017. DOI
Zhang R., Arrigoni A., Panesar D.K. Could reactive MgO cement be a green solution? The effect of CO2 mineralization and manufacturing route on the potential global warming impact. Cem. Concr. Compos. 2021;124:104263. doi: 10.1016/j.cemconcomp.2021.104263. DOI
Walling S.A., Provis J.L. Magnesia Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016;116:4170–4204. doi: 10.1021/acs.chemrev.5b00463. PubMed DOI
Xu X., Lin X., Pan X., Ji T., Liang Y., Zhang H. Influence of silica fume on the setting time and mechanical properties of a new magnesium phosphate cement. Constr. Build. Mater. 2020;235:117544. doi: 10.1016/j.conbuildmat.2019.117544. DOI
Abdelrazig B.E.I., Sharp J.H., El-Jazairi B. The microstructure and mechanical properties of mortars made from magnesia-phosphate cement. Cem. Concr. Res. 1989;19:247–258. doi: 10.1016/0008-8846(89)90089-6. DOI
Stierli R.F., Tarver C.C., Gaidis J.M. Magnesium Phosphate Concrete Compositions. 3,960,580. [(accessed on 23 January 2022)];U.S. Patent. 1976 June 1; Available online: https://patentimages.storage.googleapis.com/95/3d/df/29c8bae34f574a/US3960580.pdf.
Yang Q., Zhu B., Wu X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater. Struct. 2000;33:229–234. doi: 10.1007/BF02479332. DOI
Yang Q., Wu X. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete. Cem. Concr. Res. 1999;29:389–396. doi: 10.1016/S0008-8846(98)00230-0. DOI
Mestres G., Ginebra M.-P. Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 2011;7:1853–1861. doi: 10.1016/j.actbio.2010.12.008. PubMed DOI
Wagh A.S., Jeong S.Y., Singh D. High strength phosphate cement using industrial byproduct ashes; Proceedings of the 1st International Conference on High Strength Concrete; Kona, HI, USA. 13 July 1997; pp. 542–553.
Tao Y., Zhenyu L., Zhichao H., Chunrong R., Yuanyuan W., Xin H., Jie W., Mengliang L., Qiubai D., Khan K., et al. Mechanical and microstructure of magnesium potassium phosphate cement with a high concentration of Ni(II) and its leaching toxicity. Constr. Build. Mater. 2020;245:118425. doi: 10.1016/j.conbuildmat.2020.118425. DOI
Xu B., Ma H., Shao H., Li Z., Lothenbach B. Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars. Cem. Concr. Res. 2017;99:86–94. doi: 10.1016/j.cemconres.2017.05.008. DOI
Zhang S., Shi H.S., Huang S.W., Zhang P. Dehydration characteristics of struvite-K pertaining to magnesium potassium phosphate cement system in non-isothermal condition. J. Therm. Anal. Calorim. 2013;111:35–40. doi: 10.1007/s10973-011-2170-9. DOI
Qiao F., Chau C.K., Li Z. Property evaluation of magnesium phosphate cement mortar as patch repair material. Constr. Build. Mater. 2010;24:695–700. doi: 10.1016/j.conbuildmat.2009.10.039. DOI
Xu B., Winnefeld F., Kaufmann J., Lothenbach B. Influence of magnesium-to-phosphate ratio and water-to-cement ratio on hydration and properties of magnesium potassium phosphate cements. Cem. Concr. Res. 2019;123:105781. doi: 10.1016/j.cemconres.2019.105781. DOI
Rouzic M.L., Chaussadent T., Stefan L., Saillio M. On the influence of Mg/P ratio on the properties and durability of magnesium potassium phosphate cement pastes. Cem. Concr. Res. 2017;96:27–41. doi: 10.1016/j.cemconres.2017.02.033. DOI
Yue L., Jia S., Bing C. Experimental study of magnesia and M/P ratio influencing properties of magnesium phosphate cement. Constr. Build. Mater. 2014;65:177–183. doi: 10.1016/j.conbuildmat.2014.04.136. DOI
Yue L., Bing C. Factors that affect the properties of magnesium phosphate cement. Constr. Build. Mater. 2013;47:977–983. doi: 10.1016/j.conbuildmat.2013.05.103. DOI
Qiao F., Lin W., Chau C.K., Li Z. Property Assessment of Magnesium Phosphate Cement. Key Eng. Mater. 2009;400–402:115–120. doi: 10.4028/www.scientific.net/KEM.400-402.115. DOI
Qian C., Yang J.M. Effect of Disodium Hydrogen Phosphate on Hydration and Hardening of Magnesium Potassium Phosphate Cement. J. Mater. Civ. Eng. 2011;23:1405–1411. doi: 10.1061/(ASCE)MT.1943-5533.0000305. DOI
Li Y., Shi T., Chen B. Experimental Study of Dipotassium Hydrogen Phosphate Influencing Properties of Magnesium Phosphate Cement. J. Mater. Civ. Eng. 2015;28:04015170. doi: 10.1061/(ASCE)MT.1943-5533.0001461. DOI
Li J., Zhang W., Cao Y. Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement. Constr. Build. Mater. 2014;58:122–128. doi: 10.1016/j.conbuildmat.2014.02.015. DOI
Xu B., Lothenbach B., Hongyan M. Properties of fly ash blended magnesium potassium phosphate mortars: Effect of the ratio between fly ash and magnesia. Cem. Concr. Compos. 2018;90:169–177. doi: 10.1016/j.cemconcomp.2018.04.002. DOI
Liu K., Ma S., Zhang Z., Han F. Hydration and properties of magnesium potassium phosphate cement modified by granulated blast-furnace slag: Influence of fineness. Materials. 2022;15:918. doi: 10.3390/ma15030918. PubMed DOI PMC
Hall D.A., Stevens R., El-Jazairi B. The effect of retarders on the microstructure and mechanical properties of magnesia-phosphate cement mortar. Cem. Concr. Res. 2001;31:455–465. doi: 10.1016/S0008-8846(00)00501-9. DOI
Lahalle H., Coumes C.C.D., Mercier C., Lambertin D., Cannes C., Delpech S., Gauffinet S. Influence of the w/c ratio on the hydration process of a magnesium phosphate cement and on its retardation by boric acid. Cem. Concr. Res. 2018;109:159–174. doi: 10.1016/j.cemconres.2018.04.010. DOI
Jianming Y., Luming W., Cheng J., Dong S. Effect of fly ash on the corrosion resistance of magnesium potassium phosphate cement paste in sulfate solution. Constr. Build. Mater. 2020;237:117639. doi: 10.1016/j.conbuildmat.2019.117639. DOI
Yang J., Qian C. Effect of Borax on Hydration and Hardening Properties of Magnesium and Pottassium Phosphate Cement Pastes. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010;25:613–618. doi: 10.1007/s11595-010-0055-6. DOI
Popovics S., Rajendran N. Early Age Properties of Magnesium Phosphate-Based Cements Under Various Temperature Conditions; Proceedings of the 66th Annual Meeting of the Transportation Board; Washington, DC, USA. 12–15 January 1987.
Wen J.B., Zhang L.X., Tang X.S., Huang G.H., Zhu Y.R. Effect of Borax on Properties of Potassium Magnesium Phosphate Cement. Mater. Sci. Forum. 2018;914:160–167. doi: 10.4028/www.scientific.net/MSF.914.160. DOI
Campos M.D., Davy C.A., Djelal N., Rivenet M., Garcia J. Development of a stoichiometric magnesium potassium phosphate cement (MKPC) for the immobilization of powdered minerals. Cem. Concr. Res. 2021;142:106346. doi: 10.1016/j.cemconres.2020.106346. DOI
Lahalle H., Cauditcoumes C., Lambertin D., Cannes C., Delpech S., Gauffinet S. Influence of boric acid on the hydration of magnesium phosphate cement at an early age; Proceedings of the ICCC-2015—14th International Congress on the Chemistry of Cement; Beijing, China. 13–16 October 2015.
Xing S., Wu C. Preparation of Magnesium Phosphate Cement and Application in Concrete Repair. MATEC Web Conf. 2018;142:02007. doi: 10.1051/matecconf/201814202007. DOI
Wagh A.S., Strain R., Jeong S.Y., Reed D., Krause T., Singh D. Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics. J. Nucl. Mater. 1999;265:295–307. doi: 10.1016/S0022-3115(98)00650-3. DOI
Buj I., Torras J., Casellas D., Rovira M., Pablo J. Effect of heavy metals and water content on the strength of magnesium phosphate cements. J. Hazard. Mater. 2009;170:345–350. doi: 10.1016/j.jhazmat.2009.04.091. PubMed DOI
Gardner L.J., Corkhill C.L., Walling S.A., Vigor J.E., Murray C.A., Tang C.C., Provis J.L., Hyatt N.C. Early age hydration and application of blended magnesium potassium phosphate cements for reduced corrosion of reactive metals. Cem. Concr. Res. 2021;143:106375. doi: 10.1016/j.cemconres.2021.106375. DOI
Wagh A.S. Recent Progress in Chemically Bonded Phosphate Ceramics. Int. Sch. Res. Not. 2013;2013:983731. doi: 10.1155/2013/983731. DOI
Anh L.D.H., Pásztory Z. An overview of factors influencing thermal conductivity of building insulation materials. J. Build. Eng. 2021;44:102604. doi: 10.1016/j.jobe.2021.102604. DOI
Temuujin J., Rickard W., Lee M., Riessen A. Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings. J. Non-Cryst. Solids. 2011;357:1399–1404. doi: 10.1016/j.jnoncrysol.2010.09.063. DOI
Aslani F., Wang L. Fabrication and characterization of an engineered cementitious composite with enhanced fire resistance performance. J. Clean. Prod. 2019;221:202–214. doi: 10.1016/j.jclepro.2019.02.241. DOI
Fang Y., Cui P., Ding Z., Zhu J.X. Properties of a magnesium phosphate cement-based fire-retardant coating containing glass fiber or glass fiber powder. Constr. Build. Mater. 2018;162:553–560. doi: 10.1016/j.conbuildmat.2017.12.059. DOI
Gao X., Zhang A., Li S., Sun B., Zhang L. The resistance to high temperature of magnesia phosphate cement paste containing wollastonite. Mater. Struct. 2016;49:3423–3434. doi: 10.1617/s11527-015-0729-9. DOI
Fang Y., Yin X., Cui P., Wang X., Zhuang K., Ding Z., Xing F. Properties of magnesium potassium phosphate cement-expanded perlite composites applied as fire resistance coating. Constr. Build. Mater. 2021;293:123513. doi: 10.1016/j.conbuildmat.2021.123513. DOI
Pavlíková M., Pivák A., Záleská M., Jankovský O., Reiterman P., Pavlík Z. Magnesium oxychloride cement composites lightened with granulated scrap tires and expanded glass. Materials. 2020;13:4828. doi: 10.3390/ma13214828. PubMed DOI PMC
Pavlík Z., Marušiak Š., Pivák A., Pavlíková M. Improvement of consistency and setting time of magnesium 1028 potassium phosphate cement pastes and mortars; Proceedings of the 21th International Multidisciplinary 1029 Scientific Geoconference SGEM 2021; Albena, Bulgaria. 14–22 August 2021.
Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars. European Committee for Standardization; Brussels, Belgium: 1998.
Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization; Brussels, Belgium: 1999.
Záleská M., Pavlíková M., Pivák A., Pavlík Z. Characterization of Magnesium Potassium Phosphate Cement Mortar Modified with Biomass Ash Admixture; Proceedings of the 20th International Multidisciplinary Scientific Geoconference SGEM 2020; Albena, Bulgaria. 16–26 August 2020.
Non-Destructive Testing of Concrete—Method of Ultrasonic Pulse Testing of Concrete. ÚNMZ; Prague, Czech Republic: 2011.
Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness. European Committee for Standardization; Brussels, Belgium: 2016.
Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
Adan O., Brocken H., Carmeliet J., Hens H., Roels S., Hagentoft C.-E. Determination of liquid water transfer properties of porous building materials and development of numerical assessment methods: Introduction to the EC HAMSTAD project. J. Build. Phys. 2004;27:253–260. doi: 10.1177/1097196304042323. DOI
Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2020.
Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method. International Organization for Standardization; Geneva, Switzerland: 2015.
Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient due to Capillarity Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.
Kumaran M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envel. Build. Sci. 1999;22:349–355. doi: 10.1177/109719639902200409. DOI
Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI
Hu X. Characteristics and Application of Thermal Mortar Materials in Building Materials; Proceedings of the 2nd International Conference on Materials Manufacturing and Modelling, ICMMM—2019; Tamilnadu, India. 8–9 March 2019.
Posani M., Veiga R., De Freitas V.P. Thermal mortar-based insulation solutions for historic walls: An extensive hygrothermal characterization of materials and systems. Constr. Build. Mater. 2022;315:125640. doi: 10.1016/j.conbuildmat.2021.125640. DOI
Chen C.-Y., Shen Z.-Y., Lee M.-T. On developing a hydrophobic rubberized cement paste. Materials. 2021;14:3687. doi: 10.3390/ma14133687. PubMed DOI PMC
Simultaneous Immobilization of Heavy Metals in MKPC-Based Mortar-Experimental Assessment