Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly Ash

. 2021 Feb 26 ; 14 (5) : . [epub] 20210226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33652947

Grantová podpora
19-00262S Grantová Agentura České Republiky
SGS20/153/OHK1/3T/11 Grant Agency of the Czech Technical University in Prague

Lightweight Sorel's cement composites doped with coal fly ash were produced and tested. Commercially available foam granulate was used as lightening aggregate. For comparison, reference composites made of magnesium oxychloride cement (MOC) and quartz sand were tested as well. The performed experiments included X-ray diffraction, X-ray fluorescence, scanning electron microscopy, light microscopy, and energy dispersive spectroscopy analyses. The macro- and microstructural parameters, mechanical resistance, stiffness, hygric, and thermal parameters of the 28-days matured composites were also researched. The combined use of foam glass and fly ash enabled to get a material of low weight, high porosity, sufficient strength and stiffness, low water imbibition, and greatly improved thermal insulation performance. The developed lightweight composites can be considered as further step in the design and production of alternative and sustainable materials for construction industry.

Zobrazit více v PubMed

UN . World Urbanization Prospects: The 2018 Revision. 1st ed. UN; New York, NY, USA: 2019. pp. 1–79.

Huang B., Gao X., Xu X., Song J., Geng Y., Sarkis J., Fishman T., Kua H., Nakatani J. A Life Cycle Thinking Framework to Mitigate the Environmental Impact of Building Materials. One Earth. 2020;3:564–573. doi: 10.1016/j.oneear.2020.10.010. DOI

Marinova S., Deetman S., van der Voet E., Daioglou V. Global construction materials database and stock analysis of residential buildings between 1970. J. Clean. Prod. 2020;247:119146. doi: 10.1016/j.jclepro.2019.119146. DOI

IEA Energy Efficiency. [(accessed on 4 January 2021)]; Available online: https://www.iea.org/reports/energy-efficiency-2020.

Hossain M.U., Ng S.T. Influence of waste materials on buildings’ life cycle environmental impacts: Adopting resource recovery principle. Resour. Conserv. Recycl. 2019;142:10–23. doi: 10.1016/j.resconrec.2018.11.010. DOI

Global Alliance for Buildings and Construction (GlobalABC) 2019 Global Status Report for Buildings and Construction: Towards A Zero-Emission. 1st ed. IEA, United Nations Environment Programme; Paris, France: 2019. pp. 12–16.

Lin Y., Du H. Graphene reinforced cement composites: A review. Constr. Build. Mater. 2020;265:120312. doi: 10.1016/j.conbuildmat.2020.120312. DOI

Awolusi T.F., Oke O.L., Atoyebi O.D., Akinkurolere O.O., Sojobi A.O. Waste tires steel fiber in concrete: A review. Innov. Infrastruct. Solut. 2021;6:1–12. doi: 10.1007/s41062-020-00393-w. DOI

Rao N., Suryaprakash V., Hemanth B., Hemanth Sai Kalyan B. Investigation on mechanical propeties of concrete by partial replacement of cement with waste glass powder ad fly ash. Int. J. Mech. Prod. Eng. Res. Dev. 2020;10:11883–11888.

Fischedick M., Roy J., Acquaye A., Allwood J., Ceron J.-P., Geng Y., Kheshgi H., Lanza A., Perczyk D., Price L. Industry in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group iii to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; New York, NY, USA: 2014. Technical Report.

Qiao H., Cheng Q., Wang J., Shi Y. The application review of magnesium oxychloride cement. J. Chem. Pharm. Res. 2014;6:180–185.

Kusiorowski R., Zaremba T. The use of asbestos wastes as a fillers on sorel cement. Ceram. Silik. 2018;62:31–40. doi: 10.13168/cs.2017.0042. DOI

He P., Poon C.S., Tsang D.C. Water resistance of magnesium oxychloride cement wood board with the incorporation of supplementary cementitious materials. Constr. Build. Mater. 2020;255:119145. doi: 10.1016/j.conbuildmat.2020.119145. DOI

Ruan S., Unluer C. Influence of supplementary cementitious materials on the performance and environmental impacts of reactive magnesia cement concrete. J. Clean. Prod. 2017;159:62–73. doi: 10.1016/j.jclepro.2017.05.044. DOI

Gomes C.M., Garry A.-L., Freitas E., Bertoldo C., Siqueira G. Effects of Rice Husk Silica on microstructure and mechanical properties of Magnesium-oxychloride Fiber Cement (MOFC) Constr. Build. Mater. 2020;241:118022. doi: 10.1016/j.conbuildmat.2020.118022. DOI

Aiken T.A., Russell M., McPolin D., Bagnall L. Magnesium oxychloride boards: Understanding a novel building material. Mater. Struct. 2020;53:1–16. doi: 10.1617/s11527-020-01547-z. DOI

Ye Q., Han Y., Zhang S., Gao Q., Zhang W., Chen H., Gong S., Shi S.Q., Xia C., Li J. Bioinspired and biomineralized magnesium oxychloride cement with enhanced compressive strength and water resistance. J. Hazard. Mater. 2020;383:121099. doi: 10.1016/j.jhazmat.2019.121099. PubMed DOI

Jianli M., Youcai Z., Jinmei W., Li W. Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge. Constr. Build. Mater. 2010;24:79–83. doi: 10.1016/j.conbuildmat.2009.08.011. DOI

He P., Poon C.S., Tsang D.C. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC) Constr. Build. Mater. 2017;147:519–524. doi: 10.1016/j.conbuildmat.2017.04.187. DOI

Walling S.A., Provis J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016;116:4170–4204. doi: 10.1021/acs.chemrev.5b00463. PubMed DOI

Zhou X., Li Z. Light-weight wood–magnesium oxychloride cement composite building products made by extrusion. Constr. Build. Mater. 2012;27:382–389. doi: 10.1016/j.conbuildmat.2011.07.033. DOI

Hu C., Xu B., Ma H., Chen B., Li Z. Micromechanical investigation of magnesium oxychloride cement paste. Constr. Build. Mater. 2016;105:496–502. doi: 10.1016/j.conbuildmat.2015.12.182. DOI

Li K., Wang Y., Yao N., Zhang A. Recent progress of magnesium oxychloride cement: Manufacture, curing, structure and performance. Constr. Build. Mater. 2020;255:119381. doi: 10.1016/j.conbuildmat.2020.119381. DOI

Gomes C.M., de Oliveira A.D.S. Chemical phases and microstructural analysis of pastes based on magnesia cement. Constr. Build. Mater. 2018;188:615–620. doi: 10.1016/j.conbuildmat.2018.08.083. DOI

Misra A.K., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI

Wang D., Di S., Gao X., Wang R., Chen Z. Strength properties and associated mechanisms of magnesium oxychloride cement-solidified urban river sludge. Constr. Build. Mater. 2020;250:118933. doi: 10.1016/j.conbuildmat.2020.118933. DOI

Beaudoin J., Ramachandran V. Strength development in magnesium oxychloride and other cements. Cem. Concr. Res. 1975;5:617–630. doi: 10.1016/0008-8846(75)90062-9. DOI

Jiříčková A., Lojka M., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Jankovský O. Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH)2∙MgCl2∙8H2O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. DOI

Lojka M., Jankovský O., Jiříčková A., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlík Z. Thermal stability and kinetics of formation of magnesium oxychloride phase 3Mg(OH)MgCl8H2O. Materials. 2020;13:767. doi: 10.3390/ma13030767. PubMed DOI PMC

Qu Z.Y., Wang F., Liu P., Yu Q.L., Brouwers H.J.H. Super-hydrophobic magnesium oxychloride cement (MOC): From structural control to self-cleaning property evaluation. Mater. Struct. 2020;53:1–10. doi: 10.1617/s11527-020-01462-3. DOI

Xu B., Ma H., Hu C., Yang S., Li Z. Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites. Constr. Build. Mater. 2016;102:613–619. doi: 10.1016/j.conbuildmat.2015.10.205. DOI

Zhang X., Ge S., Wang H., Chen R. Effect of 5-phase seed crystal on the mechanical properties and microstructure of magnesium oxychloride cement. Constr. Build. Mater. 2017;150:409–417. doi: 10.1016/j.conbuildmat.2017.05.211. DOI

Kastiukas G., Ruan S., Unluer C., Liang S., Zhou X. Environmental Assessment of Magnesium Oxychloride Cement Samples: A Case Study in Europe. Sustainable. 2019;11:6957. doi: 10.3390/su11246957. DOI

Ruan S., Unluer C. Comparative life cycle assessment of reactive MgO and Portland cement production. J. Clean. Prod. 2016;137:258–273. doi: 10.1016/j.jclepro.2016.07.071. DOI

Yang N., Scott A., Watson M. Reactive magnesium oxide products: Carbon neutral cement for the future; Proceedings of the Concrete NZ Conference; Claudelands, Hamilton, OH, USA. 15–17 October 2018.

Power I.M., Dipple G.M., Francis P.S. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem. Concr. Compos. 2017;78:97–107. doi: 10.1016/j.cemconcomp.2017.01.003. DOI

Luo X., Fan W., Li C., Wang Y., Yang H., Liu X., Yang S. Effect of hydroxyacetic acid on the water resistance of magnesium oxychloride cement. Constr. Build. Mater. 2020;246:118428. doi: 10.1016/j.conbuildmat.2020.118428. DOI

He P., Poon C.S., Tsang D.C. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI

Záleská M., Pavlíková M., Jankovský O., Lojka M., Antončík F., Pivák A., Pavlík Z. Influence of waste plastic aggregate and water-repellent additive on the properties of lightweight magnesium oxychloride cement composite. Appl. Sci. 2019;9:5463. doi: 10.3390/app9245463. DOI

Deng D. The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement. Cem. Concr. Res. 2003;33:1311–1317. doi: 10.1016/S0008-8846(03)00043-7. DOI

Chen X., Zhang T., Bi W., Cheeseman C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI

Chau C., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI

Pivák A., Pavlíková M., Záleská M., Lojka M., Jankovský O., Pavlík Z. Magnesium oxychloride cement composites with silica filler and coal fly ash admixture. Materials. 2020;13:2537. doi: 10.3390/ma13112537. PubMed DOI PMC

Lauermannová A.-M., Antončík F., Lojka M., Jankovský O., Pavlíková M., Pivák A., Záleská M., Pavlík Z. The impact of graphene and diatomite admixtures on the performance and properties of high-performance magnesium oxychloride cement composites. Materials. 2020;13:5708. doi: 10.3390/ma13245708. PubMed DOI PMC

Collivignarelli M.C., Cillari G., Ricciardi P., Miino M.C., Torretta V., Rada E.C., Abbà A. The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review. Sustainable. 2020;12:7903. doi: 10.3390/su12197903. DOI

Tosic N., Marinkovic S., Stojanovic A., Nikola T., Snežana M., Aleksandar S. Sustainability of the concrete industry: Current trends and future outlook. Tehnika. 2017;72:38–44. doi: 10.5937/tehnika1701038T. DOI

European Commission . Non-Critical War Materials Factsheets: Study on the EU’s List of Critical Raw Materials. Publications Office of the European Union; Luxembourg: 2020.

Drew L.J., Langer W.H., Sachs J.S. Environmentalism and Natural Aggregate Mining. Nat. Resour. Res. 2002;11:19–28. doi: 10.1023/A:1014283519471. DOI

He P., Hossain U., Poon C.S., Tsang D.C. Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. J. Clean. Prod. 2019;207:391–399. doi: 10.1016/j.jclepro.2018.10.015. DOI

Biel T.D., Lee H. Magnesium oxychloride cement concrete with recycled tire rubber. Transp. Res. Rec. 1996;1561:6–12. doi: 10.1177/0361198196156100102. DOI

Pavlíková M., Pivák A., Záleská M., Jankovský O., Reiterman P., Pavlík Z. Magnesium oxychloride cement composites lightened with granulated scrap tires and expanded glass. Materials. 2020;13:4828. doi: 10.3390/ma13214828. PubMed DOI PMC

Sonat C., Unluer C. Development of magnesium-silicate-hydrate (M-S-H) cement with rice husk ash. J. Clean. Prod. 2019;211:787–803. doi: 10.1016/j.jclepro.2018.11.246. DOI

Guo Y., Zhang Y., Soe K., Hutchison W.D., Timmers H., Poblete M.R. Effect of fly ash on mechanical properties of magnesium oxychloride cement under water attack. Struct. Concr. 2020;21:1181–1199. doi: 10.1002/suco.201900329. DOI

Wu J., Chen H., Guan B., Xia Y., Sheng Y., Fang J. Effect of Fly Ash on Rheological Properties of Magnesium Oxychloride Cement. J. Mater. Civ. Eng. 2019;31:04018405. doi: 10.1061/(ASCE)MT.1943-5533.0002597. DOI

AASHTO . Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Association of State Highway and Transportation Officials; Washington, DC, USA: 2007.

Sanjuán M.Á., Suárez-Navarro J.A., Argiz C., Mora P. Assessment of natural radioactivity and radiation hazards owing to coal fly ash and natural pozzolan Portland cements. J. Radioanal. Nucl. Chem. 2020;325:381–390. doi: 10.1007/s10967-020-07263-w. DOI

Font J., Casas M., Forteza R., Cerdà V., Garcias F. Natural radioactive elements and heavy metals in coal, fly ash and bottom ash from a thermal power plant. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1993;28:2061–2073. doi: 10.1080/10934529309375995. DOI

Zielinski R.A., Budahn J.R. Radionuclides in fly ash and bottom ash: Improved characterization based on radiography and low energy gamma-ray spectrometry. Fuel. 1998;77:259–267. doi: 10.1016/S0016-2361(97)00194-4. DOI

Erdman S., Gapparova K., Khudyakova T., Tomshina A. Magnesia Binder Preparation from Local Natural and Technogenic Raw Materials. Procedia Chem. 2014;10:310–313. doi: 10.1016/j.proche.2014.10.052. DOI

EN 933-1: Tests for Geometrical Properties of Aggregates Determination of Particle Size Distribution . Sieving Method. European Committee for Standardization; Brussels, Belgium: 2012.

EN 1015-3: Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization; Brussels, Belgium: 1999.

EN 1015-10: Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened 676 Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

Pavlik Z., Keppert M., Pavlíková M., Žumár J., Fořt J., Černý R. Mechanical, hygric, and durability properties of cement mortar with mswi bottom ash as partial silica sand replacement. Cem. Wapno Beton. 2014;2014:67–80.

Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI

EN 1015-11, Methods of Test for Mortar for Masonry-Part 10: Determination of Flexural and Compressive Strength 678 of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

EN 1015-18: Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.

Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI

Li Y., Yu H., Zheng L., Wen J., Wu C., Tan Y. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Constr. Build. Mater. 2013;38:1–7. doi: 10.1016/j.conbuildmat.2012.06.016. DOI

Gong W., Wang N., Zhang N. Effect of fly ash and metakaolin on the macroscopic and microscopic characterizations of magnesium oxychloride cement. Constr. Build. Mater. 2021;267:120957. doi: 10.1016/j.conbuildmat.2020.120957. DOI

Ma Z., Tang Q., Wu H., Xu J., Liang C. Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste. Cem. Concr. Compos. 2020;114:103758. doi: 10.1016/j.cemconcomp.2020.103758. DOI

Yue D.-T., Tan Z.-C., Di Y.-Y., Lv X.-R., Sun L.-X. Specific Heat Capacity and Thermal Conductivity of Foam Glass (Type 150P) at Temperatures from 80 to 400 K. Int. J. Thermophys. 2006;27:270–281. doi: 10.1007/s10765-006-0026-5. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...