The Impact of Graphene and Diatomite Admixtures on the Performance and Properties of High-Performance Magnesium Oxychloride Cement Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01866S
Grantová Agentura České Republiky
SGS20/153/OHK1/3T/11
Grant Agency of the Czech Technical University in Prague
PubMed
33327587
PubMed Central
PMC7765065
DOI
10.3390/ma13245708
PII: ma13245708
Knihovny.cz E-zdroje
- Klíčová slova
- composites, diatomite, graphene, magnesium oxychloride, sorel cement,
- Publikační typ
- časopisecké články MeSH
A high-performance magnesium oxychloride cement (MOC) composite composed of silica sand, diatomite powder, and doped with graphene nanoplatelets was prepared and characterized. Diatomite was used as a 10 vol.% replacement for silica sand. The dosage of graphene was 0.5 wt.% of the sum of the MgO and MgCl2·6H2O masses. The broad product characterization included high-resolution transmission electron microscopy, X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectroscopy analyses. The macrostructural parameters, pore size distribution, mechanical resistance, stiffness, hygric and thermal parameters of the composites matured for 28-days were also the subject of investigation. The combination of diatomite and graphene nanoplatelets greatly reduced the porosity and average pore size in comparison with the reference material composed of MOC and silica sand. In the developed composites, well stable and mechanically resistant phase 5 was the only precipitated compound. Therefore, the developed composite shows high compactness, strength, and low water imbibition which ensure high application potential of this novel type of material in the construction industry.
Zobrazit více v PubMed
Friedlingstein P., Houghton R.A., Marland G., Hackler J., Boden T.A., Conway T.J., Canadell J.G., Raupach M.R., Ciais P., Le Quéré C. Update on CO2 emissions. Nat. Geosci. 2010;3:811–812. doi: 10.1038/ngeo1022. DOI
Allwood J.M., Cullen J.M., Milford R.L. Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050. Environ. Sci. Technol. 2010;44:1888–1894. doi: 10.1021/es902909k. PubMed DOI
Arıoğlu Akan M.Ö., Dhavale D.G., Sarkis J. Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. J. Clean. Prod. 2017;167:1195–1207. doi: 10.1016/j.jclepro.2017.07.225. DOI
Flower D.J.M., Sanjayan J.G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 2007;12:282. doi: 10.1065/lca2007.05.327. DOI
Ay N., Ünal M. The use of waste ceramic tile in cement production. Cem. Concr. Res. 2000;30:497–499. doi: 10.1016/S0008-8846(00)00202-7. DOI
Jang H.-S., So S.-Y. The properties of cement-based mortar using different particle size of grinding waste insulator powder. J. Build. Eng. 2015;3:48–57. doi: 10.1016/j.jobe.2015.06.007. DOI
Segre N., Joekes I. Use of tire rubber particles as addition to cement paste. Cem. Concr. Res. 2000;30:1421–1425. doi: 10.1016/S0008-8846(00)00373-2. DOI
Nochaiya T., Wongkeo W., Chaipanich A. Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete. Fuel. 2010;89:768–774. doi: 10.1016/j.fuel.2009.10.003. DOI
Sorel S. On a new magnesium cement. CR Acad. Sci. 1867;65:102–104.
Kiyanets A.V. Prospects for application of magnesium binder in construction. IOP Conf. Ser. Mater. Sci. Eng. 2018;451:012074. doi: 10.1088/1757-899X/451/1/012074. DOI
Bilinski H., Matkovic B., Mazuranic C., Zunic T. The Formation of Magnesium Oxychloride Phases in the Systems MgO-MgCl2-H2O and NaOH-MgCl2-H2O. J. Am. Ceram. Soc. 1984;67:266–269. doi: 10.1111/j.1151-2916.1984.tb18844.x. DOI
Lojka M., Jankovský O., Jiříčková A., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlík Z. Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2·MgCl2·8H2O. Materials. 2020;13:767. doi: 10.3390/ma13030767. PubMed DOI PMC
Jiříčková A., Lojka M., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Jankovský O. Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH) 2MgCl2 8H2O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. DOI
Dinnebier R.E., Freyer D., Bette S., Oestreich M. 9Mg(OH)2·MgCl2·4H2O, a High Temperature Phase of the Magnesia Binder System. Inorg. Chem. 2010;49:9770–9776. doi: 10.1021/ic1004566. PubMed DOI
Dinnebier R.E., Oestreich M., Bette S., Freyer D. 2Mg(OH)2·MgCl2·2H2O and 2Mg(OH)2·MgCl2·4H2O, Two High Temperature Phases of the Magnesia Cement System. Z. Anorg. Allg. Chem. 2012;638:628–633. doi: 10.1002/zaac.201100497. DOI
Matkovic B., Young J. Microstructure of magnesium oxychloride cements. Nat. Phys. Sci. 1973;246:79. doi: 10.1038/physci246079a0. DOI
Misra A., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI
Montle J., Mayhan K. The role of magnesium oxychloride as a fire-resistive material. Fire Technol. 1974;10:201–210. doi: 10.1007/BF02588845. DOI
Plekhanova T., Keriene J., Gailius A., Yakovlev G. Structural, physical and mechanical properties of modified wood–magnesia composite. Constr. Build. Mater. 2007;21:1833–1838. doi: 10.1016/j.conbuildmat.2006.06.029. DOI
Qiao H.X., Zhu B.R., Shi Y.Y., Dong J.M., Elizabeth Wanjiru M. Strength development and micro-mechanism of magnesium oxychloride cement concrete. Mater. Res. Innov. 2015;19:S1–S185, S181–S190. doi: 10.1179/1432891715Z.0000000001401. DOI
Sorre C.A., Armstrong C.R. Reactions and Equi ibria in Magnesium Oxych oride Cements. J. Am. Ceram. Soc. 1976;59:51–54. doi: 10.1111/j.1151-2916.1976.tb09387.x. DOI
Thompson H.C. Fireproof Product Using Magnesium Oxychloride Cement. 3,963,849. U.S. Patent. 1976 Jun 15;
Sofer Z., Šimek P., Jankovský O., Sedmidubský D., Beran P., Pumera M. Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale. 2014;6:13082–13089. doi: 10.1039/C4NR04644G. PubMed DOI
Bouša D., Luxa J., Mazanek V., Jankovský O., Sedmidubský D., Klimova K., Pumera M., Sofer Z. Toward graphene chloride: Chlorination of graphene and graphene oxide. RSC Adv. 2016;6:66884–66892. doi: 10.1039/C6RA14845J. DOI
Jankovsky O., Novacek M., Luxa J., Sedmidubsky D., Fila V., Pumera M., Sofer Z. A New Member of the Graphene Family: Graphene Acid. Chem. Eur. J. 2016;22:17416–17424. doi: 10.1002/chem.201603766. PubMed DOI
Allen M.J., Tung V.C., Kaner R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI
Morozov S.V., Novoselov K.S., Katsnelson M.I., Schedin F., Elias D.C., Jaszczak J.A., Geim A.K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008;100:016602. doi: 10.1103/PhysRevLett.100.016602. PubMed DOI
Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109. doi: 10.1103/RevModPhys.81.109. DOI
Wang X., Zhi L., Müllen K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008;8:323–327. doi: 10.1021/nl072838r. PubMed DOI
Blake P., Brimicombe P.D., Nair R.R., Booth T.J., Jiang D., Schedin F., Ponomarenko L.A., Morozov S.V., Gleeson H.F., Hill E.W., et al. Graphene-Based Liquid Crystal Device. Nano Lett. 2008;8:1704–1708. doi: 10.1021/nl080649i. PubMed DOI
Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M.R., Geim A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008;320:1308. doi: 10.1126/science.1156965. PubMed DOI
Guo Z., Zhang D., Gong X.-G. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 2009;95:163103. doi: 10.1063/1.3246155. DOI
Calizo I., Balandin A.A., Bao W., Miao F., Lau C.N. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett. 2007;7:2645–2649. doi: 10.1021/nl071033g. PubMed DOI
Yu C., Shi L., Yao Z., Li D., Majumdar A. Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube. Nano Lett. 2005;5:1842–1846. doi: 10.1021/nl051044e. PubMed DOI
Lee C., Wei X., Kysar J.W., Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385. doi: 10.1126/science.1157996. PubMed DOI
Jiang J.-W., Wang J.-S., Li B. Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B. 2009;80:113405. doi: 10.1103/PhysRevB.80.113405. DOI
Frank I.W., Tanenbaum D.M., van der Zande A.M., McEuen P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B. 2007;25:2558–2561. doi: 10.1116/1.2789446. DOI
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Sedmidubský D. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI
Dimov D., Amit I., Gorrie O., Barnes M.D., Townsend N.J., Neves A.I.S., Withers F., Russo S., Craciun M.F. Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications. Adv. Funct. Mater. 2018;28:1705183. doi: 10.1002/adfm.201705183. DOI
Shamsaei E., de Souza F.B., Yao X., Benhelal E., Akbari A., Duan W. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr. Build. Mater. 2018;183:642–660. doi: 10.1016/j.conbuildmat.2018.06.201. DOI
Brichni A., Hammi H., Aggoun S., Mnif A. Optimisation of magnesium oxychloride cement properties by silica glass. Adv. Cem. Res. 2016;28:654–663. doi: 10.1680/jadcr.16.00024. DOI
He P., Poon C.S., Tsang D.C. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI
Li C.D., Yu H.F. Advanced Materials Research. Trans Tech Publications Ltd.; Baech, Switzerland: 2010. Study on Recycle of Sawdust Sorel’s cement concrete waste; pp. 382–385.
Chau C., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI
Paschen S. Kieselgur—Mining, Processing and Use. Vereinigte Deutsche Kieselgurwerke; Munster, Germany: 1986. pp. 158–162. Industriebetriebe Heinrich Meyer—Werke Breloh G.m.b.H. und Co. K.G.
Fuya W., Huifen Z., Huang F., Guoxi C., Deqiang W., Hongping H. A mineralogical study of diatomite in Leizhou Peninsula. Chin. J. Geochem. 1995;14:140–151. doi: 10.1007/BF02873297. DOI
Duraia E.-S.M., Burkitbaev M., Mohamedbakr H., Mansurov Z., Tokmolden S., Beall G.W. Growth of carbon nanotubes on diatomite. Vacuum. 2009;84:464–468. doi: 10.1016/j.vacuum.2009.09.012. DOI
Irani M., Mousavian M., Keshtkar A. Adsorption of Lead from Aqueous Solutions Using Natural Diatomite; Proceedings of the 7th International Chemical Engineering Congress & Exhibition; Kish Island, Hormozgan, Iran. 21–24 November 2011.
Beheshti H., Irani M. Removal of lead(II) ions from aqueous solutions using diatomite nanoparticles. Desalin. Water Treat. 2016;57:18799–18805. doi: 10.1080/19443994.2015.1095683. DOI
Aytaş Ş., Akyil S., Aslani M.A.A., Aytekin U. Removal of uranium from aqueous solutions by diatomite (Kieselguhr) J. Radioanal. Nucl. Chem. 1999;240:973–976. doi: 10.1007/BF02349885. DOI
Yılmaz B., Ediz N. The use of raw and calcined diatomite in cement production. Cem. Concr. Compos. 2008;30:202–211. doi: 10.1016/j.cemconcomp.2007.08.003. DOI
Degirmenci N., Yilmaz A. Use of diatomite as partial replacement for Portland cement in cement mortars. Constr. Build. Mater. 2009;23:284–288. doi: 10.1016/j.conbuildmat.2007.12.008. DOI
Ergün A. Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Constr. Build. Mater. 2011;25:806–812. doi: 10.1016/j.conbuildmat.2010.07.002. DOI
Kastis D., Kakali G., Tsivilis S., Stamatakis M.G. Properties and hydration of blended cements with calcareous diatomite. Cem. Concr. Res. 2006;36:1821–1826. doi: 10.1016/j.cemconres.2006.05.005. DOI
EN 933-1, Test for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. European Committee for Standardization; Brussels, Belgium: 2012.
EN 1015-10, Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI
EN 1015-11, Methods of Test for Mortar for Masonry—Part 10: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.
He P., Poon C.S., Richardson I.G., Tsang D.C.W. The mechanism of supplementary cementitious materials enhancing the water resistance of magnesium oxychloride cement (MOC): A comparison between pulverized fuel ash and incinerated sewage sludge ash. Cem. Concr. Compos. 2020;109:103562. doi: 10.1016/j.cemconcomp.2020.103562. DOI
Chen X., Zhang T., Bi W., Cheeseman C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI
EN 13755, Natural Stone Test Methods: Determination of Water Absorption at Atmospheric Pressure. European Committee for Standardization; Brussels, Belgium: 2008.
EN 1015–18, Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.
Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI
Gustafsson S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 1991;62:797–804. doi: 10.1063/1.1142087. DOI
Chen L.-Y., Konishi H., Fehrenbacher A., Ma C., Xu J.-Q., Choi H., Xu H.-F., Pfefferkorn F.E., Li X.-C. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 2012;67:29–32. doi: 10.1016/j.scriptamat.2012.03.013. DOI
Güler Ö., Bağcı N. A short review on mechanical properties of graphene reinforced metal matrix composites. J. Mater. Res. Technol. 2020;9:6808–6833. doi: 10.1016/j.jmrt.2020.01.077. DOI
Chu H., Wang Z., Zhang Y., Wang F., Ju S., Wang L., Wang D.J.M. Using Graphene Sulfonate Nanosheets to Improve the Properties of Siliceous Sacrificial Materials: An Experimental and Molecular Dynamics Study. Materials. 2020;13:4824. doi: 10.3390/ma13214824. PubMed DOI PMC
Veiga M.R., Magalhães A., Bokan-Bosilikov V. Capillarity tests on historic mortar samples extracted from site. Methodology and compared results; Proceedings of the 13th International Masonry Conference; Amsterdam, The Netherlands. 4–7 July 2004.
Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI
EN 998-1, Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. European Committee for Standardization; Brussels, Belgium: 2010.
Lanzón M., García-Ruiz P.A. Evaluation of capillary water absorption in rendering mortars made with powdered waterproofing additives. Constr. Build. Mater. 2009;23:3287–3291. doi: 10.1016/j.conbuildmat.2009.05.002. DOI
Xu B., Ma H., Hu C., Li Y. Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Mater. Struct. 2016;49:1319–1326. doi: 10.1617/s11527-015-0578-6. DOI
Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly Ash