The Impact of Graphene and Diatomite Admixtures on the Performance and Properties of High-Performance Magnesium Oxychloride Cement Composites

. 2020 Dec 14 ; 13 (24) : . [epub] 20201214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33327587

Grantová podpora
20-01866S Grantová Agentura České Republiky
SGS20/153/OHK1/3T/11 Grant Agency of the Czech Technical University in Prague

A high-performance magnesium oxychloride cement (MOC) composite composed of silica sand, diatomite powder, and doped with graphene nanoplatelets was prepared and characterized. Diatomite was used as a 10 vol.% replacement for silica sand. The dosage of graphene was 0.5 wt.% of the sum of the MgO and MgCl2·6H2O masses. The broad product characterization included high-resolution transmission electron microscopy, X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectroscopy analyses. The macrostructural parameters, pore size distribution, mechanical resistance, stiffness, hygric and thermal parameters of the composites matured for 28-days were also the subject of investigation. The combination of diatomite and graphene nanoplatelets greatly reduced the porosity and average pore size in comparison with the reference material composed of MOC and silica sand. In the developed composites, well stable and mechanically resistant phase 5 was the only precipitated compound. Therefore, the developed composite shows high compactness, strength, and low water imbibition which ensure high application potential of this novel type of material in the construction industry.

Zobrazit více v PubMed

Friedlingstein P., Houghton R.A., Marland G., Hackler J., Boden T.A., Conway T.J., Canadell J.G., Raupach M.R., Ciais P., Le Quéré C. Update on CO2 emissions. Nat. Geosci. 2010;3:811–812. doi: 10.1038/ngeo1022. DOI

Allwood J.M., Cullen J.M., Milford R.L. Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050. Environ. Sci. Technol. 2010;44:1888–1894. doi: 10.1021/es902909k. PubMed DOI

Arıoğlu Akan M.Ö., Dhavale D.G., Sarkis J. Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. J. Clean. Prod. 2017;167:1195–1207. doi: 10.1016/j.jclepro.2017.07.225. DOI

Flower D.J.M., Sanjayan J.G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 2007;12:282. doi: 10.1065/lca2007.05.327. DOI

Ay N., Ünal M. The use of waste ceramic tile in cement production. Cem. Concr. Res. 2000;30:497–499. doi: 10.1016/S0008-8846(00)00202-7. DOI

Jang H.-S., So S.-Y. The properties of cement-based mortar using different particle size of grinding waste insulator powder. J. Build. Eng. 2015;3:48–57. doi: 10.1016/j.jobe.2015.06.007. DOI

Segre N., Joekes I. Use of tire rubber particles as addition to cement paste. Cem. Concr. Res. 2000;30:1421–1425. doi: 10.1016/S0008-8846(00)00373-2. DOI

Nochaiya T., Wongkeo W., Chaipanich A. Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete. Fuel. 2010;89:768–774. doi: 10.1016/j.fuel.2009.10.003. DOI

Sorel S. On a new magnesium cement. CR Acad. Sci. 1867;65:102–104.

Kiyanets A.V. Prospects for application of magnesium binder in construction. IOP Conf. Ser. Mater. Sci. Eng. 2018;451:012074. doi: 10.1088/1757-899X/451/1/012074. DOI

Bilinski H., Matkovic B., Mazuranic C., Zunic T. The Formation of Magnesium Oxychloride Phases in the Systems MgO-MgCl2-H2O and NaOH-MgCl2-H2O. J. Am. Ceram. Soc. 1984;67:266–269. doi: 10.1111/j.1151-2916.1984.tb18844.x. DOI

Lojka M., Jankovský O., Jiříčková A., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlík Z. Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2·MgCl2·8H2O. Materials. 2020;13:767. doi: 10.3390/ma13030767. PubMed DOI PMC

Jiříčková A., Lojka M., Lauermannová A.-M., Antončík F., Sedmidubský D., Pavlíková M., Záleská M., Pavlík Z., Jankovský O. Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH) 2MgCl2 8H2O. Appl. Sci. 2020;10:1683. doi: 10.3390/app10051683. DOI

Dinnebier R.E., Freyer D., Bette S., Oestreich M. 9Mg(OH)2·MgCl2·4H2O, a High Temperature Phase of the Magnesia Binder System. Inorg. Chem. 2010;49:9770–9776. doi: 10.1021/ic1004566. PubMed DOI

Dinnebier R.E., Oestreich M., Bette S., Freyer D. 2Mg(OH)2·MgCl2·2H2O and 2Mg(OH)2·MgCl2·4H2O, Two High Temperature Phases of the Magnesia Cement System. Z. Anorg. Allg. Chem. 2012;638:628–633. doi: 10.1002/zaac.201100497. DOI

Matkovic B., Young J. Microstructure of magnesium oxychloride cements. Nat. Phys. Sci. 1973;246:79. doi: 10.1038/physci246079a0. DOI

Misra A., Mathur R. Magnesium oxychloride cement concrete. Bull. Mater. Sci. 2007;30:239–246. doi: 10.1007/s12034-007-0043-4. DOI

Montle J., Mayhan K. The role of magnesium oxychloride as a fire-resistive material. Fire Technol. 1974;10:201–210. doi: 10.1007/BF02588845. DOI

Plekhanova T., Keriene J., Gailius A., Yakovlev G. Structural, physical and mechanical properties of modified wood–magnesia composite. Constr. Build. Mater. 2007;21:1833–1838. doi: 10.1016/j.conbuildmat.2006.06.029. DOI

Qiao H.X., Zhu B.R., Shi Y.Y., Dong J.M., Elizabeth Wanjiru M. Strength development and micro-mechanism of magnesium oxychloride cement concrete. Mater. Res. Innov. 2015;19:S1–S185, S181–S190. doi: 10.1179/1432891715Z.0000000001401. DOI

Sorre C.A., Armstrong C.R. Reactions and Equi ibria in Magnesium Oxych oride Cements. J. Am. Ceram. Soc. 1976;59:51–54. doi: 10.1111/j.1151-2916.1976.tb09387.x. DOI

Thompson H.C. Fireproof Product Using Magnesium Oxychloride Cement. 3,963,849. U.S. Patent. 1976 Jun 15;

Sofer Z., Šimek P., Jankovský O., Sedmidubský D., Beran P., Pumera M. Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale. 2014;6:13082–13089. doi: 10.1039/C4NR04644G. PubMed DOI

Bouša D., Luxa J., Mazanek V., Jankovský O., Sedmidubský D., Klimova K., Pumera M., Sofer Z. Toward graphene chloride: Chlorination of graphene and graphene oxide. RSC Adv. 2016;6:66884–66892. doi: 10.1039/C6RA14845J. DOI

Jankovsky O., Novacek M., Luxa J., Sedmidubsky D., Fila V., Pumera M., Sofer Z. A New Member of the Graphene Family: Graphene Acid. Chem. Eur. J. 2016;22:17416–17424. doi: 10.1002/chem.201603766. PubMed DOI

Allen M.J., Tung V.C., Kaner R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI

Morozov S.V., Novoselov K.S., Katsnelson M.I., Schedin F., Elias D.C., Jaszczak J.A., Geim A.K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008;100:016602. doi: 10.1103/PhysRevLett.100.016602. PubMed DOI

Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109. doi: 10.1103/RevModPhys.81.109. DOI

Wang X., Zhi L., Müllen K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008;8:323–327. doi: 10.1021/nl072838r. PubMed DOI

Blake P., Brimicombe P.D., Nair R.R., Booth T.J., Jiang D., Schedin F., Ponomarenko L.A., Morozov S.V., Gleeson H.F., Hill E.W., et al. Graphene-Based Liquid Crystal Device. Nano Lett. 2008;8:1704–1708. doi: 10.1021/nl080649i. PubMed DOI

Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M.R., Geim A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008;320:1308. doi: 10.1126/science.1156965. PubMed DOI

Guo Z., Zhang D., Gong X.-G. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 2009;95:163103. doi: 10.1063/1.3246155. DOI

Calizo I., Balandin A.A., Bao W., Miao F., Lau C.N. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett. 2007;7:2645–2649. doi: 10.1021/nl071033g. PubMed DOI

Yu C., Shi L., Yao Z., Li D., Majumdar A. Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube. Nano Lett. 2005;5:1842–1846. doi: 10.1021/nl051044e. PubMed DOI

Lee C., Wei X., Kysar J.W., Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385. doi: 10.1126/science.1157996. PubMed DOI

Jiang J.-W., Wang J.-S., Li B. Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B. 2009;80:113405. doi: 10.1103/PhysRevB.80.113405. DOI

Frank I.W., Tanenbaum D.M., van der Zande A.M., McEuen P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B. 2007;25:2558–2561. doi: 10.1116/1.2789446. DOI

Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlík Z., Pivák A., Sedmidubský D. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI

Dimov D., Amit I., Gorrie O., Barnes M.D., Townsend N.J., Neves A.I.S., Withers F., Russo S., Craciun M.F. Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications. Adv. Funct. Mater. 2018;28:1705183. doi: 10.1002/adfm.201705183. DOI

Shamsaei E., de Souza F.B., Yao X., Benhelal E., Akbari A., Duan W. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr. Build. Mater. 2018;183:642–660. doi: 10.1016/j.conbuildmat.2018.06.201. DOI

Brichni A., Hammi H., Aggoun S., Mnif A. Optimisation of magnesium oxychloride cement properties by silica glass. Adv. Cem. Res. 2016;28:654–663. doi: 10.1680/jadcr.16.00024. DOI

He P., Poon C.S., Tsang D.C. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018;86:98–109. doi: 10.1016/j.cemconcomp.2017.11.010. DOI

Li C.D., Yu H.F. Advanced Materials Research. Trans Tech Publications Ltd.; Baech, Switzerland: 2010. Study on Recycle of Sawdust Sorel’s cement concrete waste; pp. 382–385.

Chau C., Chan J., Li Z. Influences of fly ash on magnesium oxychloride mortar. Cem. Concr. Compos. 2009;31:250–254. doi: 10.1016/j.cemconcomp.2009.02.011. DOI

Paschen S. Kieselgur—Mining, Processing and Use. Vereinigte Deutsche Kieselgurwerke; Munster, Germany: 1986. pp. 158–162. Industriebetriebe Heinrich Meyer—Werke Breloh G.m.b.H. und Co. K.G.

Fuya W., Huifen Z., Huang F., Guoxi C., Deqiang W., Hongping H. A mineralogical study of diatomite in Leizhou Peninsula. Chin. J. Geochem. 1995;14:140–151. doi: 10.1007/BF02873297. DOI

Duraia E.-S.M., Burkitbaev M., Mohamedbakr H., Mansurov Z., Tokmolden S., Beall G.W. Growth of carbon nanotubes on diatomite. Vacuum. 2009;84:464–468. doi: 10.1016/j.vacuum.2009.09.012. DOI

Irani M., Mousavian M., Keshtkar A. Adsorption of Lead from Aqueous Solutions Using Natural Diatomite; Proceedings of the 7th International Chemical Engineering Congress & Exhibition; Kish Island, Hormozgan, Iran. 21–24 November 2011.

Beheshti H., Irani M. Removal of lead(II) ions from aqueous solutions using diatomite nanoparticles. Desalin. Water Treat. 2016;57:18799–18805. doi: 10.1080/19443994.2015.1095683. DOI

Aytaş Ş., Akyil S., Aslani M.A.A., Aytekin U. Removal of uranium from aqueous solutions by diatomite (Kieselguhr) J. Radioanal. Nucl. Chem. 1999;240:973–976. doi: 10.1007/BF02349885. DOI

Yılmaz B., Ediz N. The use of raw and calcined diatomite in cement production. Cem. Concr. Compos. 2008;30:202–211. doi: 10.1016/j.cemconcomp.2007.08.003. DOI

Degirmenci N., Yilmaz A. Use of diatomite as partial replacement for Portland cement in cement mortars. Constr. Build. Mater. 2009;23:284–288. doi: 10.1016/j.conbuildmat.2007.12.008. DOI

Ergün A. Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Constr. Build. Mater. 2011;25:806–812. doi: 10.1016/j.conbuildmat.2010.07.002. DOI

Kastis D., Kakali G., Tsivilis S., Stamatakis M.G. Properties and hydration of blended cements with calcareous diatomite. Cem. Concr. Res. 2006;36:1821–1826. doi: 10.1016/j.cemconres.2006.05.005. DOI

EN 933-1, Test for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. European Committee for Standardization; Brussels, Belgium: 2012.

EN 1015-10, Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI

EN 1015-11, Methods of Test for Mortar for Masonry—Part 10: Determination of Flexural and Compressive Strength of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 1999.

He P., Poon C.S., Richardson I.G., Tsang D.C.W. The mechanism of supplementary cementitious materials enhancing the water resistance of magnesium oxychloride cement (MOC): A comparison between pulverized fuel ash and incinerated sewage sludge ash. Cem. Concr. Compos. 2020;109:103562. doi: 10.1016/j.cemconcomp.2020.103562. DOI

Chen X., Zhang T., Bi W., Cheeseman C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019;213:528–536. doi: 10.1016/j.conbuildmat.2019.04.086. DOI

EN 13755, Natural Stone Test Methods: Determination of Water Absorption at Atmospheric Pressure. European Committee for Standardization; Brussels, Belgium: 2008.

EN 1015–18, Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Committee for Standardization; Brussels, Belgium: 2002.

Feng C., Guimarães A.S., Ramos N., Sun L., Gawin D., Konca P., Hall C., Zhao J., Hirsch H., Grunewald J., et al. Hygric properties of porous building materials (VI): A round robin campaign. Build. Environ. 2020;185:107242. doi: 10.1016/j.buildenv.2020.107242. DOI

Gustafsson S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 1991;62:797–804. doi: 10.1063/1.1142087. DOI

Chen L.-Y., Konishi H., Fehrenbacher A., Ma C., Xu J.-Q., Choi H., Xu H.-F., Pfefferkorn F.E., Li X.-C. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 2012;67:29–32. doi: 10.1016/j.scriptamat.2012.03.013. DOI

Güler Ö., Bağcı N. A short review on mechanical properties of graphene reinforced metal matrix composites. J. Mater. Res. Technol. 2020;9:6808–6833. doi: 10.1016/j.jmrt.2020.01.077. DOI

Chu H., Wang Z., Zhang Y., Wang F., Ju S., Wang L., Wang D.J.M. Using Graphene Sulfonate Nanosheets to Improve the Properties of Siliceous Sacrificial Materials: An Experimental and Molecular Dynamics Study. Materials. 2020;13:4824. doi: 10.3390/ma13214824. PubMed DOI PMC

Veiga M.R., Magalhães A., Bokan-Bosilikov V. Capillarity tests on historic mortar samples extracted from site. Methodology and compared results; Proceedings of the 13th International Masonry Conference; Amsterdam, The Netherlands. 4–7 July 2004.

Vyšvařil M., Pavlíková M., Záleská M., Pivák A., Žižlavský T., Rovnaníková P., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020;263:120617. doi: 10.1016/j.conbuildmat.2020.120617. DOI

EN 998-1, Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. European Committee for Standardization; Brussels, Belgium: 2010.

Lanzón M., García-Ruiz P.A. Evaluation of capillary water absorption in rendering mortars made with powdered waterproofing additives. Constr. Build. Mater. 2009;23:3287–3291. doi: 10.1016/j.conbuildmat.2009.05.002. DOI

Xu B., Ma H., Hu C., Li Y. Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Mater. Struct. 2016;49:1319–1326. doi: 10.1617/s11527-015-0578-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...